FINAL REPORT

U.F. Project No: 00093785 FDOT Project No: BDK75 977-48

EVALUATION OF LONG-LIFE CONCRETE PAVEMENT PRACTICES FOR USE IN FLORIDA

Mang Tia David Verdugo Ohhoon Kwon

November 2012

Department of Civil and Coastal Engineering Engineering School of Sustainable Infrastructure and Environment College of Engineering University of Florida Gainesville, Florida 32611-6580

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation or the U.S. Department of Transportation.

Prepared in cooperation with the State of Florida Department of Transportation and the U.S. Department of Transportation.

SI (MODERN METRIC) CONVERSION FACTORS (from FHWA)

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
	LENGTH			
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	AREA				
in²	square inches	645.2	square millimeters	mm ²	
ft ²	square feet	0.093	square meters	m ²	
yd²	square yard	0.836	square meters	m²	
ac	acres	0.405	hectares	ha	
mi²	square miles	2.59	square kilometers	km ²	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd³	cubic yards	0.765	cubic meters	m ³
NOTE: volumes g	IOTE: volumes greater than 1000 L shall be shown in m ³			

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	MASS				
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
TEMPERATURE (exact degrees)					
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C	
SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
SYMBOL fc	WHEN YOU KNOW	1	Iux	IX SYMBOL	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
	FORCE and PRESSURE or STRESS			
lbf	poundforce	4.45	newtons	Ν
kip	kilo poundforce	4.45	kilo newtons	kN
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
	LENGTH			
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	AREA				
mm²	square millimeters	0.0016	square inches	in ²	
m²	square meters	10.764	square feet	ft ²	
m²	square meters	1.195	square yards	yd ²	
ha	hectares	2.47	acres	ас	
km²	square kilometers	0.386	square miles	mi ²	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	VOLUME				
mL	milliliters	0.034	fluid ounces	fl oz	
L	liters	0.264	gallons	gal	
m ³	cubic meters	35.314	cubic feet	ft ³	
m ³	cubic meters	1.307	cubic yards	yd ³	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
	MASS			
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL		
TEMPERATURE (exact degrees)						
۵°	°C Celsius 1.8C+32 Fahrenheit °F					

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
	ILLUMINATION				
lx	lux	0.0929	foot-candles	fc	
cd/m ²	candela/m ²	0.2919	foot-Lamberts	fl	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL			
	FORCE and PRESSURE or STRESS						
N	newtons	0.225	poundforce	lbf			
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²			

*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised March 2003)

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	. 3. Rec	ipient's Catalog No.		
4. Title and Subtitle		5. Rep	ort Date November	r 2012	
Evaluation of Long-Life Cor	ncrete Pavement Practice	s for Use	November	1 2012	
in Florida			6. Performing Organization Code		
7. Author(s)		8. Perf	orming Organization	Report No.	
Mang Tia, David Ve	erdugo & Ohhoon Kwon		00093785	5	
9. Performing Organization Name and Addre		10. Wo	ork Unit No. (TRAIS)		
Department of Civil and Coastal Engineering Engineering School of Sustainable Infrastructure & Environment					
University of Florida	$\frac{1}{1}$	Invironment 11. Co	ntract or Grant No.		
365 Weil Hall – P.O. Box 11	6580		BDK75 9	77-48	
Gainesville, FL 32611-6580					
12. Sponsoring Agency Name and Address		13. Ty	pe of Report and Peri	od Covered	
Florida Department of Trans	portation		Final Re		
605 Suwannee Street, MS 30	A		03/28/11 - 1	2/01/12	
Tallahassee, FL 32399		14. Sp	onsoring Agency Cod	le	
15. Supplementary Notes					
Prepared in cooperation with	the U.S. Department of 7	Fransportation and the	Federal Highwa	v Administration	
• •	I	1	6	5	
16. Abstract	1 Descent Design Cuid		1 1	ad to on altima the	
The Mechanistic-Empirica					
performance of three typical concre concrete pavements and the effects					
concrete flexural strength, and the a					
affecting the predicted performance					
base material appear to have no sign			material and the	sumess of the	
			luate the effects o	of various factors	
The Long-Term Pavement Performance (LTPP) database was used to evaluate the effects of various factors on the performance of Jointed Plain Concrete Pavements (JPCP). Critical stress analysis was also performed on the					
selected LTPP JPCP sections to determine the maximum stress in the concrete slab under a critical load and					
temperature condition. The computed critical stress-to-strength ratio was found to be the most significant parameter					
	which can be related to the performance of the LTPP pavements. A lower stress-to-strength ratio is related to better				
observed pavement performance. F					
affecting the stress-to-strength ratio		•	Ū.		
rupture, and coefficient of thermal expansion. Variations in the base and subbase properties were found to have					
minimal effects on the stress-to-strength ratios for concrete slab thickness of 11 inches or higher.					
From the results of this stud	dy, the three typical Flori	da concrete pavement	designs are show	vn to be suitable	
for use as long-life pavements if the	-	-			
	coefficient of thermal expansion, and adequate flexural strength. A concrete slab thickness of 13 or 14 inches is				
recommended. In addition to meeting the present FDOT specification requirements for these three designs, the					
concrete mixture must be designed and evaluated according to the procedure recommended in the project report.					
17. Key Words 18. Distribution Statement Long-life concrete pavement, MEPDG, critical stress 18. Distribution Statement					
analysis, stress-to-strength ratio, LTPP, concrete slab No restrictions.					
thickness, modulus of rupture, life cycle cost analysis,					
elastic modulus, coefficient of thermal expansion.					
19. Security Classif. (of this report)	20. Security Classif. (of t	this page)	21. No. of Pages	22. Price	
Unclassified	Unclassifie		241	-	
Form DOT F 1700.7 (8-72)	Reproduction of completed	page authorized			

ACKNOWLEDGMENTS

A compilation of this nature could not have been completed without the help and support of others. The Florida Department of Transportation (FDOT) is gratefully acknowledged for providing the financial support for this study. The FDOT Materials Office provided much valuable information and data needed for this investigation. Sincere thanks and appreciation are extended to the Project Manager, Mr. Abdenour Nazef, for providing his technical coordination and expert advice throughout the project. Sincere gratitude is extended to FDOT personnel who have provided valuable review and advice on the progress report and final report, particularly to Messrs. James Greene, Charles Holzschuher, Emmanuel Uwaibi, and Sean Masters.

EXECUTIVE SUMMARY

Background and Research Needs

The initial design for new construction for both asphalt and concrete pavements in Florida is 20 years. While the rehabilitation period for asphalt pavements varies from 8 to 20 years, that of concrete pavements varies from 20 to 25 years. With the increase in traffic volume on our roadways today and the cost associated with traffic delay due to the needed rehabilitation work, it makes good sense for FDOT to consider the alternative of designing and constructing pavements with a design life of 50 years or more for Florida. Research is needed to determine the best construction practices and design features for long-life concrete pavements with service life of over 50 years, which are most suitable for Florida's climate and conditions.

Evaluation of Concrete Pavement Designs Using MEPDG Model

The MEPDG (Mechanistic-Empirical Pavement Design Guide) model which has been calibrated for the Florida conditions was used to analyze the performance of three typical concrete pavement designs in Florida to evaluate their suitability for use as long-life concrete pavements and the effects of various design parameters on their performance. These three designs are referred to as Types I-A, I-B, and II in this report. Type I-A pavement has a 4-inch treated permeable base over a 2-inch asphalt structural course. Type I-B pavement has a 4-inch asphalt concrete base. Both Type I-A and I-B pavements have a 12-inch Type B stabilized subgrade with a minimum Limerock Bearing Ratio (LBR) of 40. Type II pavement has a 6-inch special stabilized subbase/base over 54-inch A-3 soil. The special stabilized subbase is made up of 3 inches of #57 or #89 coarse aggregate mixed into the top 6 inches of A-3 soil and is used as a working platform during construction. Concrete slab thickness, concrete flexural strength, and the aggregate used in the concrete were found to be the three most significant factors affecting the predicted performance of the pavement evaluated. The three aggregates used in the analysis included Brooksville limestone, Calera limestone and river gravel. For concrete with the same design flexural strength, Brooksville limestone was shown to give the best predicted performance, followed by Calera limestone and river gravel. The better predicted performance was due to the relatively low elastic modulus and low coefficient of thermal expansion of the concrete made with Brooksville limestone. When the same Brooksville aggregate was used in the concrete, increasing the modulus of rupture of the concrete gave improved predicted performance and increased service life to the pavement.

MEPDG analyses were performed to evaluate the effects of (1) types of base material, (2) stiffness of the base material, (3) erodibility of the base material, and (4) friction between the concrete and base layer on the predicted performance of these three concrete pavement designs used in Florida. The predicted performance of the pavement appeared to have improved slightly with an increase in base thickness. However, the type of base material and the stiffness of the base material appeared to have no significant effect on the predicted performance. Using different erodibility factor and friction factor for the base materials appeared to have no significant effect on the predicted performance according to the results of the MEPDG analyses.

MEPDG analyses were performed to determine the predicted service lives of these three concrete pavement designs. An initial Average Annual Daily Truck Traffic (AADTT) of 17,000, which represents high-volume truck traffic, was used in the analyses. The concrete made with Brooksville aggregate and with a modulus of rupture of 650 psi was used. The predicted service lives for these three designs with pavement thickness varying from 10 to 14 inches are presented

viii

in Table 3-44 in the report. When the concrete slab thickness is 13 inches or more, the expected service of all three designs are 50 years or more. Among the three designs, Type II has the best predicted performance, followed by Type I-A and then Type I-B.

Drainage Evaluation

Sensitivity analysis was performed using the DRIP (Drainage Requirements in Pavements) 2.0 program to evaluate the drainage characteristics of Type I-A and Type II concrete pavement designs using the steady flow method and the time-to-drain method. In comparison, the Type II design with a 6-inch permeable base shows better drainage characteristics than the Type I-A design with a 4-inch permeable base. For pavements with 2 to 4 lanes and pavement cross-slope from 2% to 6%, the required base permeability is from 200 to 700 ft/day for Type I-A design, and is from 100 to 500 ft/day for Type II design. If the same base permeability, pavement slope and number of lanes are used in both designs, Type II design has a lower time to drain than the Type I-A design.

Type I-B concrete pavement has a 4-inch asphalt concrete base layer. Since the asphalt concrete layer is a non-permeable layer, the steady-flow analysis and the time-to-drain analysis could not be appropriately performed on this type of pavement. In order for this type of pavement to not have serious issues with drainage, the following conditions must exist throughout the life of the pavement:

- (1) The concrete layer remains well bonded to the asphalt concrete layer so that little water would go between these two layers.
- (2) The pavement has good surface drainage characteristics, so that most of the water would run off the surface instead of seeping through the concrete into the asphalt concrete layer.
- (3) The asphalt concrete is resistant to stripping action, even if some water gets between the concrete and the asphalt layer.

ix

Long-term monitoring of Type I-B pavement is needed to determine whether or not there will be drainage related issue with the use of asphalt concrete base in concrete pavement in Florida.

Analysis of LTPP Data and Critical Stress Analysis

The Long-Term Pavement Performance (LTPP) database was used to evaluate the effects of various factors, which included environmental conditions, drainage types, concrete properties, base types, subgrade types and concrete slab length, on performance of Jointed Plain Concrete Pavements (JPCP) in the U.S. with emphasis on Florida and its neighboring states. Critical stress analysis was also performed, using the FEACONS program, on the selected LTPP JPCP sections to determine the maximum stress in the concrete slab under a critical load and temperature condition. The maximum computed critical stress for each condition was divided by the modulus of rupture of the concrete to determine the stress-to-strength ratio.

The computed critical stress to strength ratio was found to be the most significant parameter which can be related to the performance of the LTPP pavements. A lower stress to strength ratio is related to better observed pavement performance. The better performing pavements were noted to have a computed stress to strength ratio of less than 0.70.

Critical stress analysis was also performed on the three Florida concrete pavement designs. Results from the critical stress analysis show that the most significant factors affecting the stress-to-strength ratios are the concrete slab thickness and the concrete properties, which include the elastic modulus, modulus of rupture, and coefficient of thermal expansion. Variations in the base and subbase properties were found to have minimal effects on the stressto-strength ratios for concrete slab thickness of 11 inches or higher. This observed results agree

Х

well with the findings from the MEPDG analysis that the most significant factors affecting the performance of the concrete pavement are the concrete slab thickness and the concrete properties.

Similar to the results from the MEPDG analysis, when the same aggregate is used in the concrete, increasing the flexural strength of the concrete will result in better predicted pavement performance.

Life Cycle Cost Analysis

The cost estimates for Type I-A, Type I-B, and Type II pavements with concrete slab varying from 10 inches to 14 inches were developed. The predicted service lives of these pavements were based on the results of MEPDG analysis using a concrete made with Brooksville aggregate and modulus of rupture of 650 psi. The estimated total costs, predicted service lives, and annual costs for these three designs are shown in Tables 7-11, 7-12, and 7-13 in the report. Type II design has the lowest cost estimate, which is slightly less than that for Type I-A design, while Type I-B design has the highest cost estimate.

When cost of interest was not considered, the most cost-effective slab thickness for all three designs was 14 inches. With concrete slab thickness of 14 inches, the expected service for Type I-A, I-B, and II designs are 56, 53, and 60 years, respectively. When an interest rate of 3.5% was considered, the most cost-effective slab thickness for all three designs was 13 inches. With concrete slab thickness of 13 inches, the expected service for Type I-A, I-B, and II designs are 51, 50, and 56 years, respectively.

Recommended Long-Life Concrete Pavement Designs for Florida

From the results in this study, it appears that the three typical Florida concrete pavement designs evaluated in this study can be used as long-life pavements if the slab thickness is

xi

adequate and the concrete has low elastic modulus, low coefficient of thermal expansion and adequate flexural strength. Among the three designs evaluated, Type II pavement has the best predicted performance from the MEPDG analysis and the best drainage characteristics from the results of the drainage evaluation using the steady flow method and the time-to-drain method. Type II pavement also has the lowest cost estimate.

Type II design is recommended as the preferred design for use as long-life concrete pavements in Florida. However, if the special select A-3 soil is not available, Type I-A and Type I-B can also be used. A concrete slab thickness of 13 or 14 inches is recommended to be used. When 14 inches is used, the top 0.5 to 1 inch can be considered as sacrificial concrete for future grinding during the life of the pavement to restore ride quality, texture and remediate faulting. The present FDOT construction specifications for these three types of design are to be followed. In addition to meeting the present FDOT specification requirements for these three designs, the concrete mixture to be used must be designed and evaluated by the following procedure:

- (1) Design the concrete mix to give a flexural strength of at least 650 psi at 28 days. Use an aggregate which has a past history of producing concrete of low elastic modulus and low coefficient of thermal expansion.
- (2) Measure the flexural strength, elastic modulus and coefficient of the designed concrete mix at 28 days.
- (3) Perform MEPDG analysis to evaluate the predicted performance of the designed pavement for a design life of 50 years, using the measured concrete flexural strength, elastic modulus and coefficient of thermal expansion as input properties for the concrete. If the predicted life of the pavement is at least 50 years, the concrete mix would be acceptable for the project. If the predicted life is less than 50 years, a new concrete mix can be designed by either specifying a higher flexural strength or using a different aggregate. Steps 1 through 3 would be repeated until an acceptable concrete mix for the project is obtained.

It is recommended that FDOT establish a database of concrete mix designs which are

acceptable for use in long-life concrete pavements so that optimum concrete mixes can be

designed and selected efficiently for this purpose. A research study to evaluate the drainage requirements for these concrete pavement design is also recommended.

TABLE OF CONTENTS

DISCLAIMER	.ii
SI (MODERN METRIC) CONVERSION FACTORS	iii
TECHNICAL REPORT DOCUMENTATION PAGE	. V
ACKNOWLEDGMENTS	vi
EXECUTIVE SUMMARY	vii
LIST OF TABLES	vii
LIST OF FIGURES	xii
INTRODUCTION	1
1.1 Background and Research Needs	1
1.2 Objectives of Study	1
1.3 Research Approach	2
LITERATURE REVIEW ON LONG-LIFE CONCRETE PAVEMENTS	3
2.1 Definition of Long-Life Concrete Pavement	3
2.2 Long-Life Concrete Pavement Design Practices by Illinois DOT	
2.3 Long-Life Concrete Pavement Design Practices by Minnesota DOT	
2.4 Long-Life Concrete Pavement Design Practices by Texas DOT	
2.5 Long-Life Concrete Pavement Design Practices by Washington State DOT	
2.6 Other Examples of Long-Life Concrete Pavements	
2.6.1 Highway 41, Mölltal, Austria (Pichler, 2006)	
2.6.2 Superior St -2^{nd} St, Webster, Iowa (Cable and Ceylan., 2004)	
2.6.3 Highway 427, Toronto, Canada (PIARC, 2009)	
2.6.4 B47 Highway, Germany (FHWA, 1993)	
2.6.5 Avenue de Lorraine, Belgium (Gilles and Jasienski, 2004)2.6.6 A1 Highway, Austria (Hall et al., 2007)	
2.6.7 A6 Freeway, Paris, France (FHWA, 1993)	
2.6.8 Airport Ring Road, Clay, Iowa (Cable and Ceylan, 2004)	.17
2.7 Examples of Long-Life Concrete Pavements in Florida	
2.7.1 US 1 Southbound lanes south of Edgewater, Florida. (Wall and Schmitt,	•
2007)	.22
2.7.2 US 1 Southbound lanes south of Edgewater, Florida (Wall and Schmitt, 2007).	
2.7.3 US 92 from Daytona to Deland (Wall and Schmitt, 2007).	
2.7.4 US 17/92 Northbound and Southbound, Deland (Wall and Schmitt, 2007)	
2.7.5 US 17/92 Northbound and Southbound, Winter Park (Wall and Schmitt,	
2007)	.26

 MODEL 3.1 Typical Florida Concrete Pavement Designs 3.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement Designs 	
3.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement Designs	2
3.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement Designs	. –
3.2.1 Design Life and Terminal Distresses Used	
3.2.2 Climatic Parameters	
3.2.3 Portland Cement Concrete (PCC) Thickness	
3.3 MEPDG Rigid Pavement Performance Prediction Equations	
3.3.1 Transverse Cracking	
3.3.2 Faulting	
3.3.3 International Roughness Index (IRI)	
3.3.4 Standard Error Calculations	
3.4 Traffic Inputs	
3.5 Evaluation of the Effects of Slab Thickness and Concrete Aggregate Type on the	. –
Performance of Florida Concrete Pavement Designs	1
3.5.1 Typical Florida Concrete Pavement Designs	
3.5.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement	.4
Designs	1
3.5.3 Effects of Concrete Aggregate Type on Type I-A Pavement	
3.5.4 Effects of Concrete Aggregate Type on Type II Pavement	
3.5.5 Summary of Findings on Effects of Slab Thickness and Aggregate Type	
3.6 Evaluation of the Effects of Modulus of Rupture of Concrete on the Performance of	
Florida Concrete Pavement Designs	5
3.6.1 Analysis to Evaluate the Effects of Modulus of Rupture using the MEPDG	.9
Model	5
3.6.2 Effects of Modulus of Rupture of Concrete on Type I-A and Type I-B	
Pavements	6
3.6.3 Effects of Modulus of Rupture of Concrete on Type II Pavement	
3.6.4 Summary of Findings on Effects of Modulus of Concrete	
3.7 Evaluation of the Effects of Base Type on the Performance of Florida Concrete	.0
Pavement Designs	6
3.7.1 Analysis to Evaluate the Effects of Base Type using the MEPDG Model	
3.7.2 Effects of Base Type on Type I-A Pavement	
3.7.3 Effects of Base Type on Type I-B Pavement	
3.7.4 Effects of Base Type on Type II Pavement	
3.7.5 Effects of Erodibility Factor	
3.7.6 Effects of Friction	
3.7.7 Summary of Findings on the Effects of Base Type	
3.8 Evaluation of Effects of Incremental AADTT on Performance of Florida Concrete	.0
Pavement Designs	8
3.8.1 Analysis to Evaluate the Effects of Incremental AADTT	
3.8.2 Effects of Incremental Truck Traffic on Type I-A Pavement	
3.8.3 Effects of Incremental Truck Traffic on Type I-B Pavement	
3.8.4 Effects of Incremental Truck Traffic on Type II Pavement	
3.8.5 Summary of Findings on Effects of Incremental Truck Traffic	
3.9 Predicted Service Lives of Concrete Pavements Using Type I-A, I-B and II Designs	

EVALUATION OF DRAINAGE OF FLORIDA CONCRETE PAVEMENT DESIGNS...89

4.1 Overview	89
4.2 Drainage in Concrete Pavements	
4.2.1 Permeable Base	
4.3 DRIP 2.0 Program	92
4.3.1 Water Infiltration	93
4.3.2 Computation of Infiltrated Water	94
4.3.3 Materials Requirement for Permeable Base	96
4.3.4 Effects of Roadway Geometry	96
4.3.5 Design of Permeable Base	97
4.4 Steady-Flow Drainage Analysis	101
4.5 Time-to-Drain Drainage Analysis	
4.6 Drainage Requirements for Type I-A and Type II Designs	
4.7 Drainage Issues for Type I-B Design	140
EVALUATION OF FACTORS AFFECTING THE PERFORMANCE OF JOINTED PLAIN CONCRETE PAVEMENTS	
FLAIN CONCRETE FAVENIENTS	142
5.1 Selection of LTPP Test Sections	142
5.1.1 LTPP Data Set Overview	
5.1.2 Classification of LTPP Test Sections	
5.1.3 Selection of JPCP Test Sections for Analysis	
5.2 Evaluation of Effects of Various Design and Environment Factors on Performance	
of GPS-3 (JPCP) Test Sections	
5.2.1 Pavement Performance Indicator	149
5.2.2 The Effect of Slab Design and Environment Factors on the Pavement	
Performance	149
5.3 Evaluation of Performance of JPCP Test Sections in Wet and No-Freeze Climate	
Zone	
5.3.1 Overview	
5.3.2 Valid Test Sections in the Wet and No-Freeze Climate Zone	
5.3.3 The Effect of Concrete Properties on the Pavement Performance	
5.3.4. Critical Stress Analysis	
5.4. Evaluation of Florida Concrete Pavement Designs by Critical Stress Analysis	
5.4.1 Overview	
5.4.2 Evaluation of Effect of Various Factors	
5.4.3 Evaluation of the Recommended Florida Concrete Pavement Designs	1/3
LIFE CYCLE COST OF LONG-LIFE CONCRETE PAVEMENTS FOR FLORIDA.	177
LIFE CICLE COST OF LONG-LIFE CONCRETE IA VEMENTS FOR FLORIDA.	
6.1 Concrete Pavement Designs	177
6.2 Concrete Pavement General Structure	
6.3 Estimation of Construction Cost of Florida Concrete Pavements	180
6.3.1 Construction Cost of Concrete Slabs and Shoulders	180
6.3.2 Construction Cost of Base and Subbase	182
6.3.3 Total Construction Cost of Pavement	183

6.4 Life Cycle Cost Analysis	184
SUMMARY AND RECOMMENDATIONS	187
7.1 Findings from MEPDG Analyses	187
7.2 Findings from Drainage Evaluation	
7.3 Findings from Analysis of LTPP Data and Critical Stress Analysis	
7.4 Findings from Life Cycle Cost Analysis	190
7.5 Recommended Long-Life Concrete Pavement Designs for Florida	
LIST OF REFERENCES	193
APPENDIX A: TYPE I COST ESTIMATE SAMPLE CALCULATION (12" PCC)	196
APPENDIX B: FDOT GIS AADTT DATA (TOP 300)	199
APPENDIX C: SAMPLE INPUT PARAMETERS FOR ANALYSIS OF TYPE I-A DESIGN USING MEPDG	213

LIST OF TABLES

<u>Table</u> 2-1	Page Changes in Illinois Specifications to Achieve Long-life Concrete Pavements5
2-2	Minnesota Specifications for Long-Life Concrete Pavements
2-3	Texas Standards for Long-Life Concrete Pavements7
2-4	Modifications of Washington State Practices for Long-Life Concrete Pavements9
3-1	Typical Concrete Pavement Designs Used by FDOT
3-2	Truck Traffic Inputs to the MEPDG Model44
3-3	Hourly Traffic Distribution by Period44
3-4	Vehicle Class Distribution by Vehicle Class
3-5	Monthly Traffic Volume Adjustment Factors, Level 3 Default46
3-6	Traffic Growth Factor Model47
3-7	Number of Axles per Truck
3-8	Axle Spacing47
3-9	Typical Unit Weights of Florida Concretes
3-10	Typical Coefficient of Thermal Expansion of Florida Concretes
3-11	Elastic Modulus of Concretes Made with Different Aggregates
3-12	Edge Support and Base Properties Used
3-13	Strength Properties of Granular Permeable Base Used
3-14	Properties of Structural Asphalt Base Used
3-15	Properties of A-3 Soil Base Material Used
3-16	Properties of Stabilized Subgrade (LBR 40)
3-17	Predicted Terminal Distress of Type I-A Concrete Pavement Using Brooksville Aggregate
3-18	Predicted Terminal Distress of Type I-A Concrete Pavement Using Calera Aggregate53
3-19	Predicted Terminal Distress of Type I-A Concrete Pavement Using River Gravel

3-20	Predicted Terminal Distress of Type I-B Concrete Pavement Using Brooksville Aggregate
3-21	Predicted Terminal Distress of Type I-B Concrete Pavement Using Calera Aggregate55
3-22	Predicted Terminal Distress of Type I-B Concrete Pavement Using River Gravel55
3-23	Predicted Terminal Distress of Type II Concrete Pavement Using Brooksville Aggregate
3-24	Predicted Terminal Distress of Type II Concrete Pavement Using Calera Aggregate57
3-25	Predicted Terminal Distress of Type II Concrete Pavement Using River Gravel
3-26	Predicted Terminal Distresses of Passing Concrete Pavements
3-27	Predicted Terminal Distresses of Type I-A Concrete Pavement with Different Modulus of Rupture
3-29	Predicted Terminal Distresses of Type II Concrete Pavement with Different Modulus of Rupture
3-30	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 4 inch Base Layer (with High Erodibility and No Friction)68
3-31	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 6 inch Base Layer (with High Erodibility and No Friction)69
3-32	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 8 inch Base Layer (with High Erodibility and No Friction)70
3-33	Predicted Distresses of Type I-B Concrete Pavement Using a 4 inch Asphalt Concrete Base Layer (with High Erodibility and No Friction)71
3-34	Predicted Distresses of Type II Concrete Pavement Using Brooksville Aggregate and a 6 inch Base Layer (with High Erodibility and No Friction)
3-35	Predicted Distresses of Type II Concrete Pavement Using Brooksville Aggregate and a 8 inch Base Layer (with High Erodibility and No Friction)
3-36	Predicted Distresses of Type II Concrete Pavement Using Brooksville Aggregate and a 10 inch Base Layer (with High Erodibility and No Friction)
3-37	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 8 inch Base Layer (with Low Erodibility and No Friction)
3-38	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 8 inch Base Layer (with Low Erodibility and Full Friction)79

3-39	Truck Traffic Inputs to the MEPDG Model
3-40	Predicted Distresses of Type I-A Concrete Pavement at the End of 50-Year Life
3-41	Predicted Distresses of Type I-B Concrete Pavement at the End of 50-Year Life
3-42	Predicted Distresses of Type II Concrete Pavement at the End of 50-Year Life
3-43	2011 FDOT GIS Data Showing Roadways with the Highest AADTT
3-44	Predicted Service Lives of Concrete Pavements Using Type I-A, I-B and II Designs88
4-1	Minimum Permeability Requirements for Unbound Permeable Base Layers92
4-2	Typical Permeable Base Gradations96
4-3	Results of Steady-Flow Analysis on Type I-A Design Using 4 Lanes and 4% Slope104
4-4	Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 4% Slope105
4-5	Results of Steady-Flow Analysis on Type I-A Design Using 2 Lanes and 4% Slope106
4-6	Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 2% Slope107
4-7	Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 3% Slope1099
4-8	Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 5% Slope111
4-9	Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 6% Slope112
4-10	Results of Steady-Flow Analysis on Type II Design Using 4 Lanes and 4% Slope115
4-11	Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 4% Slope116
4-12	Results of Steady-Flow Analysis on Type II Design Using 2 Lanes and 4% Slope117
4-13	Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 2% Slope118
4-14	Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 3% Slope120
4-15	Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 5% Slope121
4-16	Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 6% Slope122
4-17	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 2% Slope124
4-18	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 3% Slope124
4-19	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 4% Slope125

4-20	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 5% Slope125
4-21	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 6% Slope126
4-22	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 2% Slope
4-23	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 3% Slope
4-24	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 4% Slope
4-25	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 5% Slope128
4-26	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 6% Slope128
4-27	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 2% Slope129
4-28	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 3% Slope129
4-29	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 4% Slope130
4-30	Results of Time-to-Drain Analysis on Type I-A Design Using 2 lanes and 5% Slope130
4-31	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 6% Slope131
4-32	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 2% Slope131
4-33	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 3% Slope132
4-34	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 4% Slope132
4-35	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 5% Slope133
4-36.	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 6% Slope133
4-37	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 2% Slope134
4-38	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 3% Slope134
4-39	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 4% Slope135
4-40	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 5% Slope135
4-41	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 6% Slope136
4-42	Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 2% Slope136

4-43	Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 3% Slope137
4-44	Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 4% Slope137
4-45	Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 5% Slope138
4-46	Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 6% Slope138
4-47	Required Base Permeability and Time to Drain for Type I-A Design (with Crack Infiltration Rate of 0.7 ft ³ /day/ft)
4-48	Required Base Permeability and Time to Drain for Type II Design (with Crack Infiltration Rate of 0.7 ft ³ /day/ft)
5-1	Classifications of GPS Test Sections143
5-2	Information on 97 Valid GPS Test Sections146
5-3	Average IRI Deterioration Rate with Different Base Types156
5-4	Average IRI Deterioration Rate with Different Subgrade Types156
5-5	Data on the LTPP JPCP Test Sections in Wet and No-Freeze Climate Zone159
5-6	Maximum Computed Stresses and Stress-to-strength Ratios for Concrete Pavement with Different Concrete Flexural Strength and Slab Thicknesses
6-1	Features of Type I-A, Type I-B and Type II Concrete Pavement Designs178
6-2	PCC Pavement Historical Cost Data
6-3	Estimated Cost of Concrete Slabs for 10 Miles of 4-Lane Pavement
6-4	Estimated Cost of Concrete Shoulders for 10 Miles of 4-Lane Pavement
6-5	Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with Type I- A Design
6-6	Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with Type I- B Design
6-7	Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with Type II Design 183
6-8	Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type I-A Design184
6-9	Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type I-B Design184
6-10	Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type II Design184

6-11	Computed Annual Cost for 10 Miles of 4-Lane Type I-A Pavement1	86
6-12	Computed Annual Cost for 10 Miles of 4-Lane Type I-B Pavement1	86
6-13	Computed Annual Cost for 10 Miles of 4-Lane Type II Pavement1	86

LIST OF FIGURES

<u>Figure</u> 2-1	<u>P</u> Typical slab structure of Highway 41 in Austria	<u>age</u> 10
2-2	Typical slab structure of Superior St. in Iowa.	11
2-3	Typical slab structure of Highway 427 in Canada	13
2-4	German jointed plain concrete pavement design.	15
2-5	Cross-section of the Lorraine Avenue design	16
2-6	Cross-section of Austrian JPCP construction.	18
2-7	LCPC/Freyssinet French load transfer device.	20
2-8	Typical slab design in A6 Freeway located in France.	20
2-9	Typical slab design located at Airport Ring Rd. in Iowa	21
2-10	US 1 in Daytona location from MP 26.865 to MP 28.708	23
2-11	US 1 in Daytona location from MP 18.666 to MP 19.648.	24
2-12	US 92 Eastbound and Westbound, Daytona to Deland. MP 0.000 to MP 15.444	25
2-13	US 92 Northbound and Southbound, Deland. MP 12.404 to MP 14.345	26
2-14	US 17/92 Northbound and Southbound, Winter Park. MP 2.622 to MP 7.008	27
3-1	Three FDOT concrete pavement designs	30
3-2	The six weather stations used to provide climatic inputs	32
4-1	Drainable pavement system.	90
4-2	Plan and sectional view of a concrete pavement (FHWA, 1993)	95
4-3	Moulton chart for depth-of-flow used in DRIP calculations.	98
4-4	Infiltration of free-water (q _i) into PCC pavement with many lanes.	99
4-5	Flow of free water (q_i) through permeable base of height (H_{min})	100
5-1	LTPP test sections in the U.S	143
5-2	Historical IRI data for test sections with reasonable trend.	144
5-3	Historical IRI data for test sections with unreasonable trend.	145

5-4	Locations of valid GPS-3 test sections used in analysis.	145
5-5	IRI deterioration rate versus concrete slab thickness	150
5-6	IRI deterioration rate versus concrete slab length	151
5-7	IRI deterioration rate versus average temperature	152
5-8	IRI deterioration rate versus number of cold days	153
5-9	IRI deterioration rate versus precipitation.	153
5-10	IRI deterioration rate versus number of wet days	154
5-11	Average IRI deterioration rate of pavements with different drainage types	155
5-12	LTPP climate zones.	158
5-13	Locations of LTPP JPCP test sections in Wet and No-Freeze Climate Zone	158
5-14	IRI deterioration rate versus compressive strength of concrete	160
5-15	IRI deterioration rate versus tensile strength of concrete.	161
5-16	IRI deterioration rate versus coefficient of thermal expansion	162
5-17	IRI deterioration rate versus elastic modulus	163
5-18	IRI deterioration rate versus slab thickness.	163
5-19	IRI deterioration rate versus slab length.	164
5-20	The finite element meshes and locations of applied loads for different slab length	166
5-21	Calculated critical stress for a test section.	167
5-22	IRI deterioration rate versus maximum computed stress	168
5-23	IRI deterioration rate versus stress-to-strength ratio	169
5-24	Calculated maximum stress for different subgrade modulus and slab thickness	171
5-25	Calculated maximum stresses for different elastic modulus and CTE.	172
5-26	Calculated maximum stress for different Poisson's ratio and unit weight.	173
5-27	Calculated maximum stress with different modulus of rupture and unit slab thickness	175

5-28	Calculated stress-to-strength ratio with different modulus rupture and unit slab thickness.	.175
6-1	Type I-A, Type I-B and II concrete general structural design – sectional view	.179
6-2	Type I-A, Type I-B and II concrete general structural design – plan view.	.179
6-3	Estimated unit cost of concrete slabs and shoulders	.181

CHAPTER 1 INTRODUCTION

1.1 Background and Research Needs

In Florida, the initial design for new construction for both asphalt and concrete pavements in Florida is 20 years. While the rehabilitation period for asphalt pavements varies from 8 to 20 years, that of concrete pavements varies from 20 to 25 years. With the increase in traffic volume on our roadways today and the cost associated with traffic delay due to the needed rehabilitation work, it makes good sense for FDOT to consider the alternative of designing and constructing pavements with a design life of 50 years or more for Florida.

The concept of designing for long-life pavements is not new. Many concrete pavements in the United States, Canada and many European countries have shown excellent service life of over 50 years, and information about their design features and performance is available in the technical literature. However, as the performance of a pavement is affected not only by its design but also by its local conditions such as weather, soil, topography and available materials, the designs which have worked well in other regions may not be applied directly to Florida without evaluation and suitable adjustments. Research is needed to determine the best construction practices and design features for long-life concrete pavements, with service life of over 50 years, which are most suitable for Florida's climate and conditions.

1.2 Objectives of Study

The main objectives of the research are:

(1) To evaluate the long-life concrete pavement designs which have been used successfully in other states and countries and how they may be applied to Florida conditions.

1

- (2) To develop several designs for long-life concrete pavements, with expected service life of over 50 years, which are suitable for use in Florida.
- (3) To recommend courses of action for FDOT in the area of long-life concrete pavement designs.

1.3 Research Approach

The main objectives of the research were achieved through the following tasks:

- 1. Literature review was conducted on characteristics of long-life concrete pavement.
- 2. Data on characteristics and performance of jointed plain concrete pavements in the LTPP (Long-Term Performance Pavement) data were analyzed to determine the factors affecting performance of concrete pavements.
- 3. Three typical concrete pavement designs used in Florida were evaluated using MEPDG (Mechanistic and Empirical Pavement Design Guide) to see if they could be used as long-life concrete pavements.
- 4. MEPDG results were investigated to determine if it is feasible to use the three designs evaluated for long-life pavement. If it is feasible, what are the required slab thickness and concrete properties?
- 5. The drainage characteristics of the three Florida designs were evaluated using the DRIP 2.0 software.
- 6. Recommended long-life concrete pavement designs for Florida were developed.

CHAPTER 2 LITERATURE REVIEW ON LONG-LIFE CONCRETE PAVEMENTS

2.1 Definition of Long-Life Concrete Pavement

The Federal Highway Administration (FHWA) Concrete Pavement Road Map team has proposed the following definitions for Long-Life Concrete Pavement (LLCP) (Ferragut et al., 2005):

- "A 'no-fix-required' pavement that would last 50 to 60 years with relatively heavy loads throughout its life"
- "Planned maintenance between 10 and 30 years, followed by heavy joint repair and possibly an overlay to take the total pavement life to 60 years"
- "A mandatory strong foundation with a thinner slab designed for 20 years of service, followed by the construction of a wraparound slab that would provide service for an additional 30 to 40 years" (A wraparound overlay covers both the top and the sides of the existing slab.)

Tayabji and Lim gave a summarization of the definition of long-life concrete pavement in the U.S. at the October 2006 International Conference on Long-Life Concrete Pavements as follows (Tayabji et al., 2006):

- "Original concrete service life is 40+ years"
- "Pavement will not exhibit premature construction and materials-related distress"
- "Pavement will have reduced potential for cracking, faulting, and spalling."
- "Pavement will maintain desirable ride and surface texture characteristics with minimal intervention activities, if warranted, or ride and texture, joint resealing, and minor repairs"

3

2.2 Long-Life Concrete Pavement Design Practices by Illinois DOT

Illinois Department of Transportation (IDOT) began researching for longer life concrete pavement in the late 1990's by implementing the following activities (Winkelman, 2006):

- Accelerated testing to determine optimal structural design features for CRCP (collaborating with the University of Illinois).
- Refining structure design features, concrete material requirements and construction process pertaining to longer life design.
- 3. Constructing several projects to determine feasibility of longer life pavements.

As a result, IDOT concrete pavement requirements were changed to include aggregate and construction requirements that achieve LLCP. More specifically, construction specifications were altered to include rigorous concrete material requirements to prevent freeze/thaw in harsh conditions. Summary of requirement changes are highlighted in Table 2-1 (Winkelman, 2006).

ltem	Long-Life Pavement Specification
Thickness design	 Jointed Plain Concrete Pavement (JPCP): IDOT developed mechanistic-empirical design procedure Continuously Reinforced Concrete Pavement (CRCP): IDOT-modified AASHTO process. Design Life: 30 to 40 years Typical pavement thickness: 250 mm (10 in) for JPCP 350 mm (14 in) for CRCP
Typical structure	 Up to 350-mm (14 in) CRCP slab. 100 to 150 mm (4 to 6 in) stabilized base (hot-mix asphalt stabilized base for CRCP) 300 mm (12 in.) well-graded aggregate subbase (top 75 mm [3 in] maximize size of 40 mm [1.5 in.]; bottom 230 mm [9 in.] maximum size of 200 mm [8 in.] aggregate) Compacted subgrade
Tie bars	 Use of tie bars at centerline and at lane-to-shoulder longitudinal joints. Use of 23 mm (1 in.) (#8) steel bars, 750 mm (30 in.) long, spaced at 600 mm (24 in.).
Aggregate Requirements	 Freeze thaw expansion (using IDOT-modified ASTM C666) 0.0040% for 30 year design and 0.025% for 40 year design (in the past, 0.060%) Alkali-silica reactivity (ASR) susceptibility (by ASTM C 1260) (applies only for 40-year designs): If the expansion is greater than 0.15 limit the equivalent alkalis of the cement source to not greater than 0.6%. When fly ash is used, the available alkali as Na₂0 shall be a maximum of 1.5% for the fly ash source. If any blended cement is used, the mortar expansion at 14 days and 8 weeks shall be a maximum of 0.02% and 0.06% respectively.
Construction requirements	 Concrete mixture temperature: 10 to 32° C (50 to 90° F). If the temperature exceeds 32° C (90° F), concrete production will cease until appropriate corrective action is taken. Slipform paving machine is required to be equipped with internal vibration and vibration monitoring device. Curing: Type II (white-pigmented) curing compound must be applied to the pavement surface and edge faces within 10 minutes of concrete finishing and tining. At least 7 days of curing are required before opening the pavement to any construction or regular traffic.
Construction quality	 Surface texture provisions for tining (for safety and low tire-pavement noise): Use of variable spacing between 17 and 54 mm (0.7 and 2.15 in.). Use of 10 degree skewed tining (for the sections with speed limit of 90 km/h [55 mi/h] or higher. Use of perpendicular tining (for the sections with lower speed limits). Surface profile: Profile Index (PI) using California Profilograph (0-in. blanking band). Grinding is required if the average PI value is above 760 mm/km (48in/mi) for major highways. Pavement warranty: covers pavement distress up to 5 years on demonstration projects only. IDOT currently does not use warranties.

Table 2-1.Changes in Illinois Specifications to Achieve Long-life Concrete Pavements.
(Winkelman, 2006)

2.3 Long-Life Concrete Pavement Design Practices by Minnesota DOT

The Minnesota DOT has adopted Long-Life Concrete Pavement (LLCP) designs for

high-volume, urban highways since 2000. The current design features and construction

specifications for the LLCP are presented in Table 2-2 (Burnham et al., 2006).

Table 2-2.	Minnesota Specifications for Long-Life Concrete Pavements (Burnham et al.,
	2006)
	Present Stendard

Item	Present Standard	
Design Life	 Design Long-Life concrete pavements (LLCP) for 60 years. 	
Cross section	 Jointed Plain Concrete Pavement (JPCP) slab thickness: 290 to 340 mm (11.5 to 13.5 in.), depending on truck traffic. Base: 75 mm to 200 mm (3 to 8in.) dense-graded granular base (MnDOT CL-5 material) or 125 mm (5 in.) open- graded aggregate base on top of 100 mm (4 in.) CL-5 Subbase: 300 to 1200 mm (12 to 48 in.) select granular (frost-resistant) subbase. 	
Joint Design	 Joint spacing: 4.6 m (15 ft.). All transverse joints are doweled. 	
Dowel bar	 Diameter: 38 to 45 mm (38 mm typical) (1.50 to 1.75 in. [1.50 in. typical]). Length: 380 to 450 mm (380 mm typical)(15 to 18 in. [15 in. typical]). Spacing: 300 mm (12 in.). Bar material: must be corrosion-resistant (stainless steel solid, clad pipe, or tube; plastic-coated steel; zinc-clad steel). 	
Surface texture	 Astroturf or broom drag. Requires 1 mm (0.04 in.) average depth in sand patch test (ASTM E 965). Note: Transverse tining is not used due to noise concerns. 	
Alkali-silica reactivity (ASR)	 Fine aggregates require tests for ASR potential by ASTM C1260. Expansion to be 0.15% or less. Reject if the expansion is greater than 0.3% Mitigation is required by using Granulated Ground Blast Furnace Slag (GGBFS) or class C fly ash when the expansion is between 0.15 and 0.30% 0.15 to 0.25%: GGBFS 35% or fly ash 20% 0.25 to 0.30%: GGBFS 35% or fly ash 30% 	
Aggregate gradation	 Combined gradation based on 8-to-18 specification: percentage retained in all specified sleeves should be between 8% and 18%, except finer than no. 30, and the coarsest sieve. 	
Concrete permeability	 Use of supplementary cementitious materials (GGBFS or class C fly ash) is required to lower the permeability of concrete. Specification requires rapid chlorine ion permeability test value of 2500 coulomb or less at 28 days, by compounds at later ages. 	
Air content	 LLCP concrete mixture: 0.7 ± 1.5%. Increased air content for possible loss of entrained air due to over-vibration or in-filling with secondary compounds at later ages. 	
Water-to- cementitious materials (w/cm)	– 0.40 or less.	
Curing	 A poly-alpha-methylstyrene membrane cure is used under normal weather conditions. No construction or general public traffic is allowed for 7 days or until the flexural strength of concrete reaches 2.4 MPa (350 lb/in²). 	
Construction quality	 Requires monitoring the vibrators during paving. Paver track speed and vibration operating frequencies must be reported daily. Initial Profile Index values, using 5-mm (0.2 in.) blanking band, greater than 126 mm/km (8 in./mi) require corrective action, generally diamond grinding. 	

2.4 Long-Life Concrete Pavement Design Practices by Texas DOT

The Texas DOT uses Continuously Reinforced Concrete Pavement (CRCP) as the

primary LLCP. The current standards for LLCP used by Texas DOT are presented in Table 2-3

(Won et al. 2006).

Items	Present Standards
Design Life	30 years for Continuously Reinforced Concrete Pavements (CRCP)
Thickness	 Use of AASHTO 1989 pavement design guide Use of reliability value of 95%. Continuously Reinforced Concrete Pavement design (CRCP): Minimum slab thickness studied: 203 mm (8 in.).
Stabilized bases	 Two types are used: 150 mm (6 in.) cement-stabilized base with 25-mm (1 in.) asphalt bond breaker layer on top. 100 mm (4 in.) asphalt-stabilized base.
Longitudinal steel design	 Use of higher steel content: generally results in more cracks but at shorter spacing and are tight. Requires staggering splices: to avoid weak spots (less than 1/3 of the splices within a 0.6 m (2 ft.) length of each lane of the pavement).
Percent Steel	 Satisfactory performance between 0.6 and 0.8% steel.
Coefficient of Thermal Expansion (CTE)	 Limits the CTE of concrete to 10.7 microstrain per °C (6.0 microstrain per °F).
Construction Joint	 Past practice for placing additional rebars of same size in a line caused weak spots at the end of the rebars. Revised design details so that the ends of rebars will stagger.
Smoothness	 Smoothness based on IRI Testing device: High Speed or Lightweight Inertial Profiler Incentive for IRI < 60 in. /mi Disincentive for IRI > 65 in./mi Corrective action for IRI > 95 in./mi

Table 2-3.	Texas Standards for Long-Life Concrete Pavements (Won et al., 2006)
	Texas Standards for Long-Life Concrete Tavements (Won et al., 2000)

2.5 Long-Life Concrete Pavement Design Practices by Washington State DOT

While the concrete pavements in Washington State were originally designed for 20 years design life, about 38 percent of concrete pavements in the state were over 35 years old with little or no maintenance or rehabilitation as of 2006 (Muench et al. 2006). Based on the experience on concrete pavement performance over the past 40 years, Washington State DOT has modified the design practices for concrete pavements to achieve a design life of 50 years. The modifications of design practices for LLCP in Washington State are summarized in Table 2-4.

ltem	Present Standards
Design Life	 Increased to 50 years
Thickness Design	 Typical: 305 mm (12 in.) Portland Cement Concrete (PCC) over 60 to 100 mm (2.4 to 4.0 in.) dense graded Hot-Mix Asphalt (HMA) base over 60 to 100 mm (2.4 to 4.0 in.) crushed stone subbase (Top 25 mm [1 in.] of PCC is considered as sacrificial for future grinding to restore profile and texture) Minimum slab thickness: 200 mm (8 in.) Design basis: 1993 AASHTO Guide for the Design of Pavements
Base Materials	 For high-volume truck routes, requires 100 mm (4 in.) dense-graded HMA base on aggregate subbase to limit base deflection, pumping, and joint faulting. Asphalt-treated base: minimized use due to its potential for stripping Cement-treated base: not allowed due to increased potential for slab cracking and higher risks of pumping.
Joint Design	 4.6-m (15 ft.) spacing Requires dowel bars Saw cut width: 5 to 8 mm (0.2 to 0.3 in.) single cut. Joint Sealant: hot-poured sealant. Tie bars: No. 5 bars, 750 mm (30 in.) long, 900-mm (36 in.) spacing.
Dowel Bars	 Dowel bar types (depending on the risk of corrosion): Stainless steel: stainless steel clad, stainless steel sleeves with an epoxy coated insert, MMFX2 steel bars. Zinc-clad steel bars Epoxy-coated: traditional black steel bar with epoxy coating (ASTM A 943) Bar dimension: 38 mm (1.5 in.) diameter, 450 mm (18 in.) length, 300 mm (12 in.) spacing 8 dowels for non-truck and high-occupancy vehicle (HOV) lanes (4 dowels in each wheel path) and 12 dowels for truck lanes.
Outside Shoulder	 4.3 m wide slab (14 ft.) with tied PCC of HMA shoulder 3.7 m wide slab (12 ft.) with tied and doweled PCC shoulder
Mix Design	 Use of combined aggregate gradation with maximum size of 20 mm (0.8 in.) Contractor developed concrete mixtures Use of Class F fly ash: max 35% by weight of total cementitious materials Use of Granulated Ground Blast Furnace Slag (GGBFS) and blended cements.
Concrete Quality	 Traffic opening compressive strength: 17 MPa (2500 lb/in²) by cylinder test or maturity method.
Surface Texture	 Transverse tining: 3.2 to 4.8 mm (0.13 to 0.19 in.) tine depth and width, 12.5 to 32.0 mm (0.50 to 1.25 in.) variable spacing.
Studded tire - Research to minimize studded tire wear and mitigate its effect is ongoing. Featinclude: combined aggregate gradation, higher flexural strength, use of highe cement and slag contents, and use of paste-hardening additives.	
Smoothness	 Specification testing device: California Profilograph Smoothness index: Profilograph Index (PrI) Blanking band: 0.2 in.

Table 2-4.Modifications of Washington State Practices for Long-Life Concrete
Pavements (Muench et al., 2006)

2.6 Other Examples of Long-Life Concrete Pavements

2.6.1 Highway 41, Mölltal, Austria (Pichler, 2006)

Highway 41 in Mölltal, Austria is an example of a LLCP which has been in service since 1956. Its concrete slab structure is shown in Figure 2-1. It can be characterized as a well-constructed pavement. The information on this pavement is summarized as follows:

General Information		
Type of pavement	JPCP	
Design life of the pavement	30 yrs	
Year of construction/ Traffic Opening Date	1956	
Present Condition		
Pavement is generally in good condition.		
Some longitudinal cracking and D cracking have been ob	served	
Traffic Information		
Between 3325 and 6140 average daily vehicles (about 5%	heavy vehicles)	
Subbase / Base	f neavy venicies)	
Type of base material	Stabilized Sand	
Base thickness	2 in (5 cm)	
Subgrade	Frost resistant	
Pavement Properties		
Slab layer thickness	7.8 in (20 cm)	
Joint spacing	26.3–32.8 ft (8–10 m)	
Slab width	N/A	
Transverse joint angle	Rectangular	
Load Transfer system (dowels / interlock)	dowels	
Dowel bar dimensions	1X 20" (2.6 X 50 cm)	
Concrete Mixture Properties		
Air Content	2%	
Additional Information:		

Additional Information:

Paper membrane was used for curing of concrete.

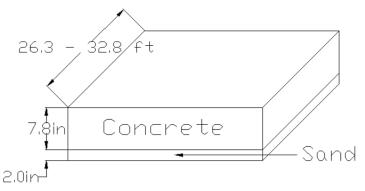
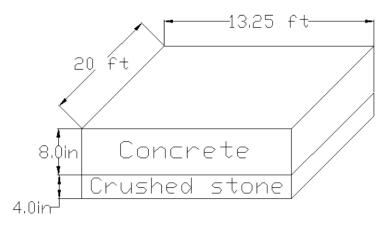



Figure 2-1. Typical slab structure of Highway 41 in Austria.

2.6.2 Superior St – 2nd St, Webster, Iowa (Cable and Ceylan, 2004).

An old concrete pavement on Superior Street, Webster, Iowa is an example of a pavement with a strong base and good concrete quality. Its concrete slab structure is shown in Figure 2-2. The information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Design life of the pavement	20 yrs
Year of construction/ Traffic Opening Date	1973
Present Condition	
Low percentage of D-cracking was observed.	
Traffic Information	
Current average daily traffic (ADT): 11700	
Subbase / Base	
Type of base material	Crushed stone
Base thickness	4 in (10.16 cm)
Pavement Properties	
Slab layer thickness	8 in (20.3 cm)
Joint spacing	20 ft (6.1 m)
Slab width	13.25 ft (4.03 m)
Transverse joint angle	Rectangular
Load Transfer system (dowels / interlock)	dowels
Dowel bar dimensions	1.25X 18"
Tie bar spacing	30 in (76.2 cm)
Tie bar dimensions	0.5"X 36"
Concrete Mixture Properties	
W/C	0.43 - 0.49
Air Content	6%
Water Content	246 (lb/cy)
Cement	573 (lb/cy)

Figure 2-2. Typical slab structure of Superior St. in Iowa.

2.6.3 Highway 427, Toronto, Canada (PIARC, 2009)

Highway 427 in Toronto, Canada is an example of a well-constructed pavement which outperformed its expected design life. Its pavement structure is shown on Figure 2-3. The information on this pavement is summarized as follows:

General Information

Type of pavement	JPCP
Design life of the pavement	30 yrs
Year of construction/ Traffic Opening Date	1968

Present Condition

Experienced some joint stepping, joint failures, joint cracking and distortion. 50% of the pavement section had friction numbers ranging from fair to poor. The remaining 50% of the section was performing in the good to very good range.

Traffic Information

Since the original construction, there were approximately 58 million Equivalent Single Axle Loads (ESALs) in the express lanes before it was rehabilitated. Truck percentage was 12%.

Drainage

Drainage in this section is provided through subdrains and an urban cross-section which includes curb and gutter.

Subbase / Base

Cement treated
6 in (15.2 cm)
Subgrade soil had a
Modulus of subgrade
reaction 115 pci

Pavement Properties

Slab layer thickness Pavement joint spacing Transverse joint angle Load Transfer system (dowels / interlock)

le (31 MPa/m).

9 in (22.9 cm) 20 ft (6.1 m) Rectangular dowels

Maintenance Performed

After 34 years of operation, maintenance was performed in 2002 to restore the ride quality. Maintenance activities on this highway have included shoulder rehabilitation, diamond grinding to restore pavement friction on certain sections, some areas have machine and manual patching.

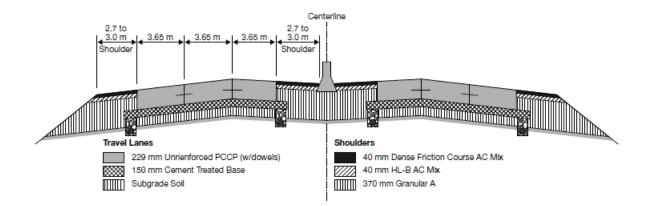


Figure 2-3. Typical slab structure of Highway 427 in Canada.

2.6.4 B47 Highway, Germany (FHWA, 1993)

B47 Highway in Germany is an example of a good performing composite pavement constructed wet-on-wet with good drainage features. Its pavement structure is shown in Figure 2-4. Information on this pavement is summarized as follows:

General Information

Type of pavement	JPCP
Design life of the pavement	30 yrs
Year of construction/ Traffic Opening Date	1965

Present Condition

Small percentage of cracking has been observed

Traffic Information

Greater than 3 million accumulated 10-ton (22-kip) ESAL. Specifically, the average ADT is of 40,000 with 25% heavy trucks. The legal maximum single-axle load was of 10 tons (22,000 lbs) when highway was designed.

Drainage

Consists of a porous concrete layer beneath the shoulder that provides a flow channel to a longitudinal subdrain. This empties at regular intervals into a lateral pipe which goes directly to a longitudinal closed drainage system.

Subbase / Base

Type of base material	Lean Concrete
Base thickness	4 in (10 cm)
Pavement Properties	
Slab layer thickness	9 in (22.9 cm)
Slab width	12.3 ft (3.75 m)
Widened Slab into shoulder	1.6 ft (0.48 m)
Shoulder design	Tied concrete
Load Transfer system (dowels / interlock)	Plastic coated dowels
Dowel Spacing	uneven (closer spacing near
	the wheel paths)

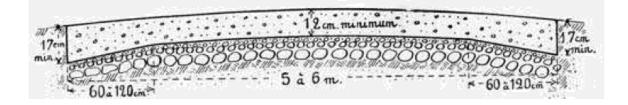
Mixture Properties

Wet-on-wet construction creating good bonding and controlled cracking.

Joints

Notching of the base was immediately performed upon placement—specifically located at the exact position where future transverse and longitudinal joints of the concrete slab are to be sawed (FHWA, 1993). This process was performed to localize the cracks on a specific direction.

Transverse joint angle	Rectangular
Joint spacing	16.4 ft (5 m)
Saw depth	0.25-0.3 of slab thickness
Joint sealant	Compression seal
Additional Information	
Surface texture	Light longitudinal brush
	(Burlap drag)


Figure 2-4. German jointed plain concrete pavement design (FHWA, 1993).

2.6.5 Avenue de Lorraine, Belgium (Gilles and Jasienski, 2004)

Avenue de Lorraine in Belgium is an example of an old pavement that has performed well due to the additional thickness at the edge, as shown in Figure 2-5. Information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Design life of the pavement	N/A
Year of construction/ Traffic Opening Date	1925
Present Condition	
Pavement was resurfaced in 2003	
Traffic Information	
Information not available	
Drainage	
Information not available	
Subbase / Base	
Type of base material	Crushed stone
Base thickness	N/A
Pavement Properties	
Slab layer thickness	5 in (12 cm)
	2 in thicker (5 cm) at edges
Pavement joint spacing	13-16 ft (3.96-4.88m)
Transverse joint angle	Rectangular
Load Transfer system (dowels / interlock)	Aggregate interlock
Maintenance Performed	

Road was rehabilitated using a concrete overlay in 2003 due to rocking of slabs as well as the formation of steps and faulting. Erosion of fine particles was seen and expansion joints were large and uncomfortable.

2.6.6 A1 Highway, Austria (Hall et al., 2007)

A1 Highway in Austria is an example of a good pavement incorporating permeable asphalt base with minimal stud tire damage. The features of this pavement are shown in Figure 2-6. The information on this pavement is summarized as follows:

General Information

Type of pavement	JPCP
Design life of the pavement	30 yrs
Year of construction/ Traffic Opening Date	1970

Present Condition

Studded tire damage was seen due to heavy traffic loading.

Traffic Information

18 to 40 million design axle loads

Drainage

Longitudinal subdrains connected to lateral pipes and a closed drainage system

Subbase / Base

Cement stabilized
8 in (20 cm)
Permeable Bitumen
2 in (5 cm)
10 in (25 cm)
1.5 in (4cm)
8.5 in (21 cm)
18-20 ft (5.5 - 6.1 m)
\leq 19.7 ft (6 m)
Rectangular
tied concrete
dowels
1 X 20" (2.5 X 51 cm)
Spaced closely on wheel paths.

Mixture Properties (wet-on-wet)

- The lower concrete course is 8.3 in (21 cm) thick, made with virgin or recycled marginal—concrete (1.25 in [32 mm] maximum aggregate size). The upper course is 1.5 in (4 cm) thick and contains smaller aggregate with high wear resistance (FHWA, 1993).
- Compressive strength is specified to be more than 5075 psi (35 MPa) for the lower layer and more than 5800 psi (40 MPa) for the top layer after 28 day curing (FHWA, 1993).
- Flexural strength was more than 708 psi (5.5 MPa) on 4.7- by 4.7- by 14 in beams.

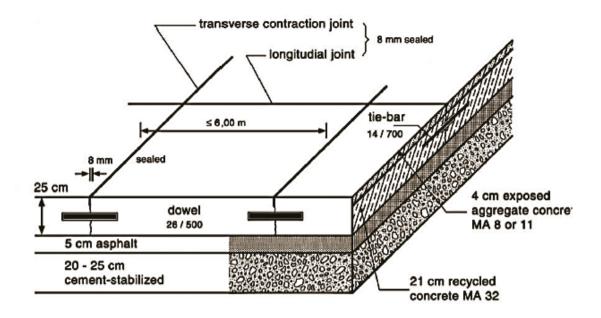


Figure 2-6. Cross-section of Austrian JPCP construction. (Hall et. al., 2007)

2.6.7 A6 Freeway, Paris, France (FHWA, 1993)

A6 Freeway in Paris, France is an example of the importance of efficient load transferring systems in long life concrete pavements. The slab design of this pavement is shown in Figure 2-7. The information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Design life of the pavement	N/A
Year of construction/ Traffic Opening Date	1978
Present Condition	
Slab faulting and stepping has been observed.	
Traffic Information	
Less than 1500 trucks per day.	
Drainage	
Geotextile drain placed over subgrade	
Subbase / Base	
Type of base material	Erosion-resistant
	lean concrete
Base thickness	6 in (15.2 cm)
Drainage	Longitudinal drainage
	Along edge joint.
Pavement Properties	
Slab layer thickness	9 in (22.9 cm)
Joint spacing	15 (4.5 m)
Slab width	12 ft (3.7 m)
Transverse joint angle	Skewed
	1:6 counterclockwise
Load Transfer system (dowels / interlock)	aggregate interlock
Mixture Properties	
Air Content	5%
Modulus of Rupture (56 days)	754 psi (5.3 MPa)
Maintenance Performed	

- Maintenance Performed
 - Lack of joint load transfer led to faulting and cracking. Problem was fixed using load transferring devices developed by the LCPC Laboratories with Freyssinet (Seen in Figure 2-8).
 - Using the load transfer device showed success in restoring load transfer from less than 50% to over 90% in certain cases (FHWA, 1993).

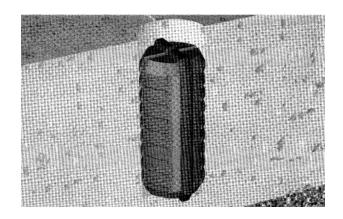


Figure 2-7. LCPC/Freyssinet French load transfer device (FHWA, 1993).

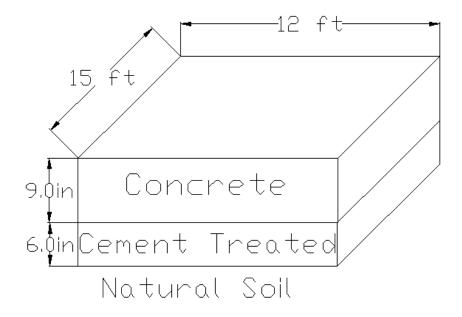
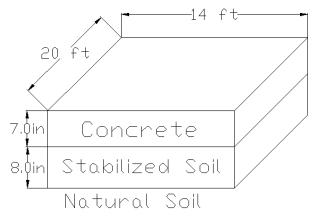


Figure 2-8. Typical slab design in A6 Freeway located in France.


2.6.8 Airport Ring Road, Clay, Iowa (Cable and Ceylan, 2004)

Airport Ring Road in Clay, Iowa, is an example of a well-performing concrete city street, whose slab design is shown in Figure 2-9. The information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Design life of the pavement	20 yrs
Year of construction/ Traffic Opening Date	1973
Present Condition	
Joints are performing well; good ride quality is observed.	
Traffic Information	
North 330, East 1550 AADTT, 15% trucks	
Subbase / Base	
Type of base	Stabilized soil
Base thickness	8 in (20.32 cm)
Pavement Properties	
Slab layer thickness	7 in (17.78 cm)
Joint spacing	20 ft (6.1 m)
Slab width	14 ft
Transverse joint angle	Rectangular
Shoulder design	natural soil
Load Transfer system (dowels / interlock)	dowels
Dowel bar dimensions	1.25 X 18"
Dowel Spacing	12 in (30.48c m)
Mixture Properties	
W/C	0.53
Air Content	5.5 to 6%
Cement	479 (lb/cy)

Maintenance Performed

Longitudinal cracking at mid-panel and wheel paths. Maintenance has been performed on these sections but not specified.

Figure 2-9. Typical slab design located at Airport Ring Rd. in Iowa.

2.7 Examples of Long-Life Concrete Pavements in Florida

2.7.1 US 1 Southbound lanes south of Edgewater, Florida. (Wall and Schmitt, 2007)

Figure 2-10 shows the location of a well-performing whitetopping pavement in Florida.

Some slabs have various special dowel configurations including: 3 dowels in each wheel path;

some slabs with special dowel spacing of 12, 24, 36, 96,108, and 120 inches from the outside

edge of passing lane; no dowels in the last 5 slabs of each test section

The information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Year of construction/ Traffic Opening Date	1988
Present Condition	
Joints are performing well, and pavement has required min	imal maintenance.
Traffic Information	
ADT of 15,920 in 1997.	
Subbase / Base	
Type S asphalt layer	1 in (2.54 cm)
Leveling course	5/8 - 3.5 in (1.6 - 8.9 cm)
Limerock base	8.5 in (21.6 cm)
Pavement Properties	
Slab layer thickness	6-8 in (15.2-20.3 cm)
Joint spacing	12-20 ft (3.7-6.1 m)
Transverse joint angle	Rectangular
Shoulder design	natural soil
Load Transfer system (dowels / interlock)	dowels
Dowel bar dimensions	³ / ₄ inch and 1-inch
Dowel bar spacing (for standard sections)	12 inch (30.5 cm)
Special dowel configurations in special sections	
Maintenance Performed	
Minimal maintenance was required.	

Figure 2-10. US 1 in Daytona location from MP 26.865 to MP 28.708 (Wall & Schmitt, 2007).

2.7.2 US 1 Southbound lanes south of Edgewater, Florida (Wall and Schmitt, 2007)

Figure 2-11 shows the location of a well-performing 4-lane pavement in Florida. The

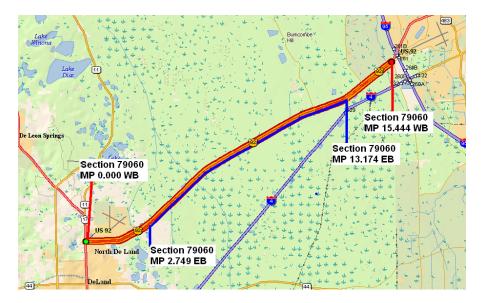
information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Year of construction/ Traffic Opening Date	1941
Present Condition	
Ride condition has deteriorated somewhat.	
Traffic Information	
ADT of 51,500 in 2010.	
Subbase / Base	
Type of base	subgrade
Base thickness	18 in (45.72 cm)
Pavement Properties	
Slab layer thickness	11.5 in (15.24-20.32 cm)
Joint spacing	14-16 ft (4.27-4.88 m)
Transverse joint angle	Rectangular
Shoulder design	natural soil
Maintenance Performed	

Original 4 lane reinforced PCC roadway constructed in 1941, widened to 6 lanes in 1996. Entire roadway was diamond grinded.

Figure 2-11. US 1 in Daytona location from MP 18.666 to MP 19.648.

2.7.3 US 92 from Daytona to Deland (Wall and Schmitt, 2007).


Figure 2-12 shows the location of a long-life concrete pavement in Florida that has been

well maintained. The information on this pavement is summarized as follows:

General Information	
Type of pavement	JPCP
Year of construction/ Traffic Opening Date	1935-1945
Present Condition	
Ride condition is deteriorated. Cracking is present.	
Traffic Information	
ADT of 9000 in 1992.	
Subbase / Base	
Type of base	stabilized subgrade
Base thickness	12 in (30.48 cm)
Pavement Properties	
Slab layer thickness	9 in-edge (22.86 cm)
	7 in-center (17.78 cm)
Joint spacing	11 ft (3.35 m)
Transverse joint angle	Rectangular
Shoulder design	natural soil
Shoulder design	natural soil

Maintenance Performed

Original 2 lane roadway constructed in segments. Roadway was widened in 1972 to 4 lane. Slab replacements have been performed, yet most of the roadway has not been subject to full rehabilitation.

Figure 2-12. US 92 Eastbound and Westbound, Daytona to Deland. MP 0.000 to MP 15.444.

2.7.4 US 17/92 Northbound and Southbound, Deland (Wall and Schmitt, 2007).

Figure 2-13 shows the location of a long-lasting, reinforced PCC pavement in Florida. The

information on this pavement is summarized as follows:

General Information	
Type of pavement	RCP
Year of construction/ Traffic Opening Date	1939
Present Condition	
Ride condition is deficient.	
Subbase / Base	
Type of base	12 in (30.5 cm)
	stabilized subgrade
Pavement Properties	
Slab layer thickness	7 in; center (17.8 cm)
	9 in; edge (22.9 cm)
Joint spacing	10 ft (3.05 m)
Transverse joint angle	Rectangular
Maintenance Performed	

Original roadway has had partial slab and asphalt repairs. Decorative concrete intersections have been constructed.

Figure 2-13. US 92 Northbound and Southbound, Deland. MP 12.404 to MP 14.345.

2.7.5 US 17/92 Northbound and Southbound, Winter Park (Wall and Schmitt, 2007).

Figure 2-14 shows the location of another long-lasting, reinforced PCC pavement in

Florida. The information on this pavement is summarized as follows:

General Information	
Type of pavement	RCP
Year of construction/ Traffic Opening Date	1936
Present Condition	
Ride condition is deficient.	
Subbase / Base	
Type of base	stabilized subgrade
Pavement Properties	
Slab layer thickness	7 in (17.78 cm)
Joint spacing	10 ft (3.05 m)
Transverse joint angle	Rectangular
Maintenance Performed	

Original roadway has had partial slab and asphalt repairs. Decorative concrete intersections have been constructed.

Figure 2-14. US 17/92 Northbound and Southbound, Winter Park. MP 2.622 to MP 7.008.

2.8 Summary

A literature review of some existing long-life concrete pavements is presented in this chapter. While it is not possible to generalize the characteristics of these pavements, some of the notable characteristics of the long-life concrete pavements include (1) good drainage, (2) good-quality concrete, (3) good-quality construction, and (4) adequate concrete slab thickness.

CHAPTER 3

EVALUATION OF FLORIDA CONCRETE PAVEMENT DESIGNS USING MEPDG MODEL

3.1 Typical Florida Concrete Pavement Designs

Three concrete pavement designs which are currently used by FDOT were selected for analysis. Table 3-1 shows the features of these three designs, which include the slab thickness, base and subbase types. These three designs are referred to as Type I-A, Type I-B and Type II in this report. According to FDOT, Type I-A pavement corresponds to a PCC slab of varied thickness with a 4-inch asphalt treated permeable base over a 2-inch asphalt structural course. Type I-B pavement consists of a PCC slab of varied thickness with a 4-inch asphalt concrete base. Both Type I-A and I-B pavements have a 12-inch Type B stabilized subgrade with a minimum Limerock Bearing Ratio (LBR) of 40. Type II pavement has a PCC slab of varied thickness with a 6-inch special stabilized subbase/base over 54-inch A-3 soil. The special stabilized subbase is made up of 3 inches of #57 or #89 coarse aggregate mixed into the top 6 inches of A-3 soil and is used as a working platform during construction. These designs are shown in Figure 3-1.

Trun o*	Design Sla	b Thickness	D	Subgrade Type	
Туре*	Minimum (inch)	Maximum (inch)	Base Type		
Type I-A			4 inch asphalt or cement treated permeable base over 2 inch Type SP asphalt structural course	12 inch Type B stabilized subgrade (LBR 40)	
Type I-B	8	N/A	4 inch asphalt concrete base	12 inch Type B stabilized subgrade (LBR 40)	
Type II			6 inch special stabilized subbase over 54 inch special select embankment	None	

Table 3-1. Typical Concrete Pavement Designs Used by FDOT (Nazef , 2011).

Note: The type designations are used only in this study.

PCC Slab (10-13) inches

4-inch Asphalt or Cement-Treated Permeable

2 inch Asphalt

12 inch Type B (LBR 40)

PCC Slab (10-13) inches

6-inch Special Stabilized Permeable Subbase

54 inch Select A-3

77N7N

Type I-A

77XV7XV

Type II

PCC Slab (10-13) inches

4 inch Asphalt

12 inch Type B (LBR 40)

7///////

Type I-B

Figure 3-1. Three FDOT concrete pavement designs.

3.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement Designs

The Florida concrete pavement designs, Type I-A, Type I-B and Type II as described in Section A1, were evaluated using the MEPDG (Mechanistic-Empirical Pavement Design Guide) model, which has been calibrated for Florida conditions, to evaluate the effect of traffic volume on their predicted performance. The inputs to the MEPDG software for this analysis are described in the following sections.

The Florida Department of Transportation along with the Texas Transportation Institute (TTI) developed a calibration model to implement the MEPDG in the state of Florida. These calibrations were used to perform the following tests.

3.2.1 Design Life and Terminal Distresses Used

The design life of the concrete pavements to be analyzed by the MEPDG model was set to be 50 years. The outputs of the MEPDG analysis give the predicted performance of the pavements in terms of joint faulting, transverse cracking and International Roughness Index (IRI) over the design period. If one or more of the predicted distresses at the end of the design period exceed the acceptable threshold values, the analyzed pavement would be considered to have failed for the design period. The input threshold values used in the MEPDG are:

> IRI = 180 in/mi Joint faulting = 0.12 in Transverse cracking = 10%

A reliability level of 95% was used in the analyses. It is important to note that Florida DOT allows a design reliability of 75% to 95%. With the incorporation of the 95% reliability level, the threshold values are:

IRI = 123 in/mi Joint faulting = 0.034 in Transverse cracking = 4.3%.

3.2.2 Climatic Parameters

The climatic condition used for this analysis was that for the North Eastern Florida Region. The MEPDG software contains a climatic database that provides hourly data from 800 weather stations all over the United States. The average data from six weather stations in the North Eastern Florida Region were used for this analysis. The weather stations used are shown in Figure 3-2.

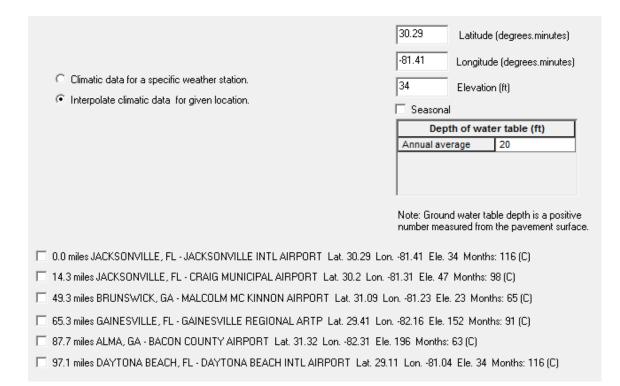


Figure 3-2. The six weather stations used to provide climatic inputs. (Fernando et al., 2008)

3.2.3 Portland Cement Concrete (PCC) Thickness

A Jointed Plain Concrete Pavement (JPCP) structure was analyzed. To evaluate the effects of concrete slab thickness on performance, the concrete slab thickness was varied according to the analysis performed.

3.3 MEPDG Rigid Pavement Performance Prediction Equations

3.3.1 Transverse Cracking

MEPDG calculates both bottom-up cracking and top-down cracking of the transverse slab at the same time and presents this data as a percentage value representing predicted amount of cracking. Equation 3-1 shows the equation used by MEPDG for the prediction of transverse cracking in a concrete slab.

$$CPK = \frac{1}{1 + (DI_F)^{-1.98}}$$
(3-1)

Where:

 DI_F = Fatigue Damage calculated using Miner's procedure below.

For fatigue calculations, the Miner's theory is used. This theory accumulates all the damage caused by fatigue in a pavement which causes the transverse cracking and is shown in Equation 3-2.

$$DI_{F} = \sum \frac{n_{i,j,k,l,m,n,o}}{N_{i,j,k,l,m,n,o}}$$
(3-2)

Where:

$$DI_F$$
 = Total fatigue damage,

$n_{i,j,k,l,m,n,o} \\$	=	Applied number of load applications at conditions i,j,k,l,m,n,o
$N_{i,j,k,l,m,n,o}$	=	Allowable number of load applications at condition
		i,j,k,l,m,n,o
i	=	Age (Accounts for change in modulus of rupture and
		elasticity, slab/base contact friction, deterioration of
		shoulder),
j	=	Month (Accounts for change in base elastic modulus and

Equivalent temperature difference between top and bottom m = PCC surfaces.

Hourly truck traffic fraction. =

The allowable number of load applications is based on the applied stresses, strength of the slab and is shown in Equation 3-3.

$$\log(N_{i,j,k,l,m,n,o}) = C_1 * (\frac{M_{Ri}}{\sigma_{i,j,k,l,m,n,o}})^{C_2}$$
(3-3)

Where:

1

$$N_{i,j,k,l,m,n,o}$$
 = Allowable number of load applications at condition
 $i,j,k,l,m,n,o;$
 M_{RI} = PCC modulus of rupture at age i, psi,
 $\sigma_{i,j,k,l,m,n,o}$ = Applied stress at condition i,j,k,l,m,n,o;

$$C_1$$
 = Calibration constant 2.0, and;

$$C_2$$
 = Calibration constant 1.22.

Total cracking is calculated using Equation 3-4 below. It is important to note that, based on the studies performed by FDOT and TTI, the models and equations used for cracking did not have to be calibrated, as these equations have been calibrated for the pavement conditions in Florida.

$$TCR = (CRK_{bp} + CRK_{td} - CRK_{bp} * CRK_{td} * 100\%)$$
(3-4)

Where:

TCR	=	Total transverse cracking (percent in all severities),
CRK _{bp}	=	Predicted amount of bottom-up transverse cracking
		(fraction); and,
CRK _{td}	=	Predicted amount of top-down transverse cracking
		(fraction).

3.3.2 Faulting

MEPDG predicts faulting using an incremental approach. At the beginning of each month, faulting is calculated using data from each of the previous months. These data are then summed up using the Equations 3-5 through 3-10 shown below. Modifications were made in this section to calibrate the MEPDG program to work in Florida conditions. These modifications were made in relation to a long study which compared MEPDG distress results to actual field data (Fernando et al., 2008).

$$Fault_m = \sum_{i=1}^m \Delta Fault_i \tag{3-5}$$

$$\Delta Fault_i = C_{34} * (FAULTMAX_{i-1} - Fault_{i-1})^2 * DE_i$$
(3-6)

$$FAULTMAX_{i} =$$

$$FAULTMAX_{0} + C_{7} * \sum_{j=1}^{m} DE_{j} * Log(1 + C_{5} * 5.0^{EROD})^{c_{6}}$$

$$FAULTMAX_{0} =$$

$$C_{0} * S_{0} = * \left[L_{0} + C_{0} * 5.0^{EROD} * L_{0} + (P_{200} * WetDays) \right]^{C_{v}}$$
(3-7)
(3-7)

$$C_{12} * \delta_{curling} * \left[Log(1 + C_5 * 5.0^{EROD}) * Log(\frac{P_{200} * WetDays}{P_s}) \right]^{C_v}$$

$$C_{12} = C_1 + C_2 * FR^{0.25}$$
(3-9)

$$C_{34} = C_3 + C_4 * FR^{0.25} \tag{3-10}$$

Where:

Fault _m	=	Mean joint faulting at the end of the month, inches,
$\Delta Fault_i$	=	Incremental change (monthly) in mean transverse
		joint faulting during month i, inches,
FAULTM	IAX _i =	Maximum mean transverse joint faulting for month i,
		inches,
FAULTM	IAX ₀ =	Initial maximum mean transverse joint faulting,
		inches,
EROD	=	Base/Subbase erodibility Factor
DE _i	=	Differential Density of energy of subgrade deformation
		accumulated during month i,
δ_{curling}	=	Maximum mean monthly slab corner upward
		deflection PCC due to temperature curling and
		moisture warping, in,
Ps	=	Overburden on subgrade, lb,
P ₂₀₀	=	Percent subgrade material passing 200 sieve,

$$C_{1,2,3...} = Global Calibration Constants (Florida Calibration).$$

$$[C_1=2.0; C_2=1.1; C_3=0.001725; C_4=0.0008; C_5=250; C_6=0.4;$$

$$C_7=1.2]$$
FR = Base freezing index defined as a percentage of time,

not applicable in Florida testing.

As mentioned above, slab curling and warping is calculated for each month using the Integrated Climatic Model (ICM) weather data that are preloaded into MEPDG. Equation 3-11 shows the procedure to find the temperature differential for each month using the MEPDG program.

$$\Delta T_m = \Delta T_{t,m} - \Delta T_{b,m} + \Delta T_{sh,m} + \Delta T_{PCW}$$
(3-11)

Where:

$\Delta T_{\rm m}$	=	Effective temperature differential for month m,
$\Delta T_{t,m}$	=	Mean PCC top-surface nighttime temperature (from
		8:00 pm to 8:00 am) for month m,
$\Delta T_{b,m}$	=	Mean PFCC bottom-surface nighttime temperature
		(from 8:00 pm to 8:00 am) for month m,
$\Delta T_{\text{sh},m}$	=	Equivalent temperature differential due to
		reversible shrinkage for month m; and,
ΔT_{PCW}	=	Equivalent temperature differential due to permanent

curl/warp.

Load Transfer Efficiency (LTE) is calculated in the MEPDG using Equation 3-12. This is used to calculate the load on the transverse joints of a pavement in question.

$$LTE_{joint} = 100 \left[1 - (1 - \frac{LTE_{dowel}}{100})(1 - \frac{LTE_{agg}}{100})(1 - \frac{LTE_{base}}{100}) \right]$$
(3-12)

Where:

Maximum faulting is a calculation based on the differential energy from truck loading, shear stress at slab corner and maximum dowel and joint bearing stress. Calculations can be made using Equation 3-13 through 3-15 shown below.

$$DE = \frac{k}{2} (\delta_L^2 - \delta_U^2)$$
(3-13)

$$\tau = \frac{AGG^*(\delta_L - \delta_U)}{h_{PCC}}$$
(3-14)

$$\sigma_b = \frac{\zeta_d * (\delta_L - \delta_U)}{d * dsp}$$
(3-15)

Where:

DE = Differential energy, lb/in,

$\delta_{\rm L}$	=	Loaded corner deflection, in,
δ _U	=	Unloaded corner deflection, in,
AGG	=	Aggregate interlock stiffness factor,
k	=	Coefficient of subgrade reaction, psi/in,
h _{PCC}	=	PCC slab thickness, in,
δ _d	=	Dowel stiffness factor =Jd*k*l*dsp,
d	=	Dowel diameter, in,
dsp	=	Dowel spacing, in,
J _d	=	Non-dimensional dowel stiffness at the time of load
		application; and,
1	=	Radius of relative stiffness, in.

Load transfer data were gathered from the Portland Cement Association to determine loss of shear capacity (Δ s) in designed pavement structures using MEPDG. These losses are created by traffic loading and are shown in Equations 3-16 through 3-18.

$$\Delta s = \sum_{j} \frac{0.005}{1.0 + (\frac{jw}{h_{PCC}})^{-5.7}} (\frac{n_{j}}{10^{6}})(\frac{\tau_{j}}{\tau_{ref}}) \quad if \quad jw \le 3.8h_{PCC}$$

$$\sum_{j} \frac{0.068}{1.0 + 6.0^{*}(\frac{jw}{h_{PCC}} - 3)^{-1.98}} (\frac{n_{j}}{10^{6}})(\frac{\tau_{j}}{\tau_{ref}}) \quad if \quad jw \ge 3.8h_{PCC}$$
(3-16)

$$\tau_{j} = \frac{AGG^{*}(\delta_{L} - \delta_{U})}{h_{PCC}}$$
(3-17)

$$\tau_{ref} = 111.1 * e^{-e^{0.988 * e^{-0.1089 \log Jagg}}}$$
(3-18)

Where:

n_j = Number of applied load applications for the current

increment by load group, j,

jw	=	Joint opening, mils (0.001 in),
τj	=	Shear Stress on the transverse crack from the response
		model for the load group j, psi,
τ_{ref}	=	Reference shear stress derived from the PCA test results,
		psi; and,
$\mathbf{J}_{\mathrm{agg}}$	=	Joint Stiffness on the transverse crack computed for the time
		increment.

Last, the damage at the dowel-concrete interface has to be computed using Equation 3-19.

$$DAM_{dow} = C_8 \sum_{j} \left(\frac{j_d * (\delta_L - \delta_U) * dsp}{df'c} \right)$$
(3-19)

Where:

$DAM_{dow} \\$	=	Damage at dowel-concrete interface,
C ₈	=	Coefficient equal to 400,
nj	=	Number of applied load applications for the current
		increment by load group, j,
\mathbf{J}_{d}	=	Non-dimensional dowel stiffness at the time of load
		application,
$\delta_{\rm L}$	=	Loaded corner deflection, in,
δ_{U}	=	Unloaded corner deflection, in,
dsp	=	Space between adjacent dowels in the wheel path, in,
f'c	=	PCC compressive strength, psi; and,
d	=	Dowel diameter, in.

3.3.3 International Roughness Index (IRI)

MEPDG combines the initial profile of the pavement and the overall loss of smoothness with age. These values were calibrated using LTPP data which include field data and spalling calculated using Equation 3-20. As mentioned previously, calibrations were made to the equations to adapt results to Florida conditions.

$$IRI = IRI_{I} + C1*CRK + C2*SPALL + C3*TFAULT + C4*SF$$
(3-20)

Where:

IRI	=	Predicted IRI, in/mi,
IRII	=	Initial smoothness measured as IRI, in/mi,
CRK	=	Percent slabs with transverse cracks (all severities),
SPALL	=	Percentage of joints with spalling (medium and high severities),
TFAULT	=	Total joint faulting accumulated per mi, in; and,
C1	=	0.8203
C2	=	0.4417
C3	=	2.5 (Florida calibration)
C4	=	25.24
SF	=	Site factor.

The site factor equation is an equation based on the pavement age and it is shown below in Equation 3-21. Percentage of joints spalled is found using Equation 3-22.

$$SF = AGE(1+0.5556*F1)(1+P_{200})*10^{-6}$$
(3-21)

Where:

AGE = Pavement age, yrs,

$$P_{200}$$
 = Percent subgrade material passing No. 200 sieve.

$$SPALL = \left(\frac{AGE}{AGE + 0.01}\right) \left(\frac{100}{1 + 1.005^{-12^*AGE + SCF}}\right)$$
(3-22)

Where:

SPALL	=	Percentage of joints spalled (medium and high severities),
AGE	=	Pavement age, yrs; and,
SCF	=	Scaling actor based on site-design (climate related).

Scaling factor is calculated in MEPDG based on properties of PCC slab that are used for the design. Equation 3-23 shows this procedure.

$$SCF = -1400 + 350 * AC_{PCC} * (0.5 + PREFORM) +$$

$$3.4f'c * 0.4 - 0.2(FT_{cycles} * AGE) + 43H_{PCC} - 536WC_{PCC}$$
(3-23)

Where:

AC _{PCC}	=	PCC air content, %,
AGE	=	Time since construction, yrs,
PREFORM	=	1 if preformed sealant is present, 0 if not,
f'c	=	PCC compressive strength, psi,
FT _{cycles}	=	Average annual number of freeze-thaw cycles (Not applicable in Florida),
H _{PCC}	=	PCC slab thickness, in; and,
WC _{PCC}	=	PCC W/C ratio.

3.3.4 Standard Error Calculations

A standard error calculation is performed by MEPDG to adjust the values predicted by the program. The error calculations for cracking, faulting and IRI are shown in Equations 3-24 through 3-26.

$$Se_{CR} = -0.00198 * CRACK^{2} + 0.5686CRACK + 2.7668$$
(3-24)

Where:

$$Se_F = (0.00761 * Fault(t) + 0.00008099)^{0.445}$$
 (3-25)

Where:

Fault(t)=Predicted mean transverse joint faulting at any given time,
in.
$$Se_F$$
=Standard error of the estimate of faulting at the predicted
level of mean faulting.

$$Se_{IRI} = (Var_{IRI_{i}} + C1^{2} * Var_{CRK} + C2^{2} * Var_{SPALL} + C3^{2} * Var_{FAULT} + S_{e}^{2} * 0.5$$
(3-26)

Where:

Se _{IRI}	=	Standard deviation of IRI, in/mi					
Var _{IRI}	=	Variance of initial IRI = $29.16 (in/mi)^2$					
Var _{CRK}	=	Variance of cracking, % of slab cracked					
Var _{SPALL}	=	Variance of spalling = 46.24%					

Var _{FAULT}	=	Variance of faulting (in^2) ; and,
S_e^2	=	Variance of overall model error = $745.3 (in/mi)^2$.

3.4 Traffic Inputs

In the MEPDG model, traffic is input either as AADTT (Average Annual Daily Truck

Traffic) or as AADT (Average Annual Daily Traffic) where a percentage of heavy vehicles

(Class 4 or higher) are multiplied to find the AADTT. A typical high-volume traffic in Florida

was used and is shown in Table 3-2.

Table 3-2.	Truck Traffic Inputs to the MEPDG Model	
	Initial two-way AADTT:	4000
	Number of lanes in design direction:	2
	Percent of trucks in design direction (%):	50
	Percent of trucks in design lane (%):	95
	Operational speed (mph):	60

In addition to the AADTT, the user may adjust the distribution of truck traffic on a

monthly basis. An adjustment factor of 1 was used; this is MEPDG's current default value for all

months and all truck classes. Hourly truck distribution as shown in Table 3-3 was used in this

analysis. Table 3-4 shows the vehicle class distribution used in this analysis.

Hourly truck traffic distribution								
	Midnight	2.3%	Noon	5.9%				
	1:00 am	2.3%	1:00 pm	5.9%				
	2:00 am	2.3%	2:00 pm	5.9%				
	3:00 am	2.3%	3:00 pm	5.9%				
	4:00 am	2.3%	4:00 pm	4.6%				
	5:00 am	2.3%	5:00 pm	4.6%				
	6:00 am	5.0%	6:00 pm	4.6%				
	7:00 am	5.0%	7:00 pm	4.6%				
	8:00 am	5.0%	8:00 pm	3.1%				
	9:00 am	5.0%	9:00 pm	3.1%				
	10:00 am	5.9%	10:00 pm	3.1%				
	11:00 am	5.9%	11:00 pm	3.1%				

Table 3-3.Hourly Traffic Distribution by PeriodHourly truck traffic distribut

AADTT distribution by vehicle class					
Class 4	1.8%				
Class 5	24.6%				
Class 6	7.6%				
Class 7	0.5%				
Class 8	5.0%				
Class 9	31.3%				
Class 10	9.8%				
Class 11	0.8%				
Class 12	3.3%				
Class 13	15.3%				

Table 3-4.Vehicle Class Distribution by Vehicle Class

The general design involves two lanes traveling in each direction, 50 percent of trucks in each direction, 95 percent of trucks in each design lane and an operational speed of 60 mph. Along with these design values, monthly volume adjustments, vehicle class distribution, hourly truck traffic distribution, traffic growth factor, number of axles per truck and wheelbase truck tractor factors have been adjusted accordingly. These adjustments can be seen on Table 3-5 through Table 3-8.

	Vehicle Class									
Month	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9	Class 10	Class 11	Class 12	Class 13
January	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
February	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
March	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
April	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
May	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
June	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
July	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
August	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
September	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
October	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
November	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
December	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

 Table 3-5.
 Monthly Traffic Volume Adjustment Factors, Level 3 Default

Vahiala Class	Growth	Growth
Vehicle Class	Rate	Function
Class 4	4.0%	Compound
Class 5	4.0%	Compound
Class 6	4.0%	Compound
Class 7	4.0%	Compound
Class 8	4.0%	Compound
Class 9	4.0%	Compound
Class 10	4.0%	Compound
Class 11	4.0%	Compound
Class 12	4.0%	Compound
Class 13	4.0%	Compound

Table 3-6.Traffic Growth Factor Model

Table 3-7.Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.62	0.39	0.00	0.00
Class 5	2.00	0.00	0.00	0.00
Class 6	1.02	0.99	0.00	0.00
Class 7	1.00	0.26	0.83	0.00
Class 8	2.38	0.67	0.00	0.00
Class 9	1.13	1.93	0.00	0.00
Class 10	1.19	1.09	0.89	0.00
Class 11	4.29	0.26	0.06	0.00
Class 12	3.52	1.14	0.06	0.00
Class 13	2.15	2.13	0.35	0.00

Table 3-8. Axle Spacing

	Short	Medium	Long
Average Axle Spacing (ft)	12	15	18
Percent of trucks	33%	33%	34%

3.5 Evaluation of the Effects of Slab Thickness and Concrete Aggregate Type on the Performance of Florida Concrete Pavement Designs

3.5.1 Typical Florida Concrete Pavement Designs

Three concrete pavement designs which are currently used by FDOT were selected for analyses. These three designs are referred to as Type I-A, Type I-B and Type II in this study, and have been described in Section 3.1 of this chapter.

3.5.2 Inputs to MEPDG Model for Evaluation of Florida Concrete Pavement Designs

The Florida concrete pavement designs, as described in Section 3.1, were evaluated using the MEPDG (Mechanistic-Empirical Pavement Design Guide) model to determine the feasibility of using them for long-life concrete pavements. The MEPDG model was used to evaluate whether or not these two designs could provide long-life concrete pavements with a design life of 50 years, and to determine the required slab thickness and concrete properties for such application. The inputs to the MEPDG software for this analysis are described in the following sections.

3.5.2.1 Design Life

The design life of the concrete pavements to be analyzed by the MEPDG model was set to be 50 years. Complete information on the design life and failure criteria are described in Section 3.2.1 of this chapter.

3.5.2.2 Climatic Parameters

Climatic conditions used in this analysis are described in Section 3.2.3 of this chapter.

3.5.2.3 Portland Cement Concrete (PCC) Thickness

A Jointed Plain Concrete Pavement (JPCP) structure was analyzed. To evaluate the effects of concrete slab thickness on performance, the concrete slab thickness was varied from 10 to 14 inches in the analysis.

3.5.2.4 Coefficients of Thermal Expansion

Three typical concretes used in Florida, made with three different aggregates were used for this analysis. These three aggregates are (1) Brooksville limestone (a porous limestone from Brooksville, Florida, (2) Calera limestone (a dense limestone from Calera, Alabama), and (3) river gravel (from Alabama). Typical properties of these concretes as obtained from previous studies for FDOT were used as inputs for concrete material properties.

Table 3-9 shows the typical unit weights of these concretes made with these three different aggregates. These values were used as the unit weights for the three different concretes considered in the analysis.

Condition	Aggregate	Unit weight (pcf)
	Brooksville	145
28-day cure	Calera	152
	River Gravel	150

 Table 3-9.
 Typical Unit Weights of Florida Concretes

(Source: "Field and Laboratory Study of Modulus of Rupture and Permeability of Structural Concretes in Florida" by Tia et al, 1990)

Table 3-10 shows the typical coefficients of thermal expansion of these concretes made with these three aggregates. These values were used as the coefficient of thermal expansion for these three concretes in the analysis.

Condition	Aggregate	CTE (x 10 ⁻⁶ in/in/F)
	Brooksville	5.68
28-day	Calera	5.99
	River Gravel	7.2

 Table 3-10.
 Typical Coefficient of Thermal Expansion of Florida Concretes

(Source: "Coefficient of Thermal Expansion of Concrete Used in Florida" by Tia et al, 1991)

A flexural strength of concrete of 650 psi was used in the analysis. In a previous study by Tia et al (1990) for the FDOT, the elastic modulus of Florida concrete was related to the flexural strength, unit weight and the type of aggregate used. The developed equations for estimation of elastic modulus were used in estimating the elastic moduli of these three concretes used in the MEPDG analyses. Table 3-11 shows the calculation of the elastic moduli of these three concretes with a flexural strength of 650 psi.

 Table 3-11.
 Elastic Modulus of Concretes Made with Different Aggregates

Equation	Condition	Aggregate	[w] Unit weight	[f _r] Modulus of Rupture	[E] Elasticity
$E = 4.20 (w^{1.5}) f_r$		Brooksville	145 pcf	650 psi	4766665 psi
$E = 4.09 (w^{1.5}) f_r$ $E = 3.69 (w^{1.5}) f_r$	28-day	Calera	152	650	4981981 psi
$E = 3.69 (w^{1.5}) f_r$		River Gravel	150	650	4406326 psi

(Source: Field and Laboratory Study of Modulus of Rupture and Permeability of Structural Concretes in Florida by Tia et al., 1990)

3.5.2.5 Joint Spacing and Dowels

Florida's Rigid Pavement Design Manual specifies a maximum joint spacing of either 15 ft or 24 times the slab thickness, whichever is smaller. For this analysis, a joint spacing of 15 ft was used.

Doweled transverse joints were used in the modeling of the pavement sections. The

dowel diameter was set to 1.5 inches with dowel bar spacing of 12 inches c/c. This relates to the

standard of practice used for metal dowel bar assembly.

3.5.2.6 Edge Support and Base Properties

Table 3-12 shows the inputs used for the edge support and base properties for the two pavement designs analyzed. A widened slab of 13 feet was used in the analysis. Table 3-13 shows the strength properties of the granular permeable base used. The properties of the structural asphalt base material are shown in Table 3-14. The properties of the A-3 soil base are shown in Table 3-15. The properties of the LBR40 stabilized subgrade are shown in Table 3-16.

Table 3-12.Edge Support and Base Prope	erties Used
Edge Support	Tied PCC shoulder, Widened slab
Long-term LTE(%):	50
Widened Slab (ft):	13
Base Properties	
Base type:	Granular
Erodibility index:	Very Erodible (5)
PCC-Base Interface	Zero friction contact
Loss of full friction (age, in months):	n/a
Table 3-13. Strength Properties of Granul	lar Permeable Base Used
Strength Properties	Level 2
Input Level:	Level 3
Analysis Type:	ICM inputs (ICM Calculated Modulus)
Poisson's ratio:	0.35
Coefficient of lateral pressure,Ko:	0.5
Modulus (input) (psi):	20000
Table 3-14. Properties of Structural Asph	alt Base Used
General Properties	
General	
Reference temperature (F°):	70
Volumetric Properties as Built	
Effective binder content (%):	11.6
Air voids (%):	7
Total unit weight (pcf):	150
Poisson's ratio:	0.35 (user entered)
Thermal Properties	
Thermal conductivity asphalt (BTU/h	r-ft-F°): 0.67
Heat capacity asphalt (BTU/lb-F°):	0.23
i lear capacity aspirait (DTU/ID-F).	0.23
	51

Table 3-15. Properties of A-3 Soil Base Material Used Strength Properties

Level 3
ICM inputs (ICM Calculated Modulus)
0.35
0.5
16000

Table 3-16.Properties of Stabilized Subgrade (LBR 40)Strength Properties

•	
Input Level:	Level 2
Analysis Type:	ICM inputs (ICM Calculated Modulus)
Poisson's ratio:	0.35
Coefficient of lateral pressure,Ko:	0.5
California Bearing Ratio (CBR):	32
Modulus (calculated) (psi):	23479

3.5.2.7 Traffic Inputs

Traffic inputs used in this analysis are described in Section 3.4 of this chapter.

3.5.3 Effects of Concrete Aggregate Type on Type I-A Pavement

This section presents the results of MEPDG analysis on the effects of concrete aggregate

type on the expected performance of pavement with Type I-A design.

3.5.3.1 Brooksville Aggregate

Table 3-17 shows the predicted terminal distresses of concrete pavements of Type I-A design and using concrete containing Brooksville limestone aggregate. The flexural strength of the concrete used in the analysis was 650 psi. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement is considered adequate for 50-year design life.

	Brooksville Aggregat	e				
Distre	ss Predicted (E = 4766	665 psi)				
Pavement D	istress		Slab Thic	kness (ir	1)	
Туре	Measurement	10	11	12	13	
Terminal IRI	(in/mi)	78.6	100.1	65.4	73	
Transverse Cracking	(% slabs cracked)	67.9	39.5	12.6	3.1	
Mean Joint Faulting	(in)	0	0.007	0.002	0.013	
Pass/Fa	il	Fail	Fail	Fail	Pass	

Table 3-17. Predicted Terminal Distress of Type I-A Concrete Pavement Using Brooksville Aggregate

3.5.3.2 Calera Aggregate

Table 3-18 shows the predicted terminal distresses of similar concrete pavements of Type I-A design and using concrete containing Calera limestone aggregate. It can be seen that when the concrete slab thickness is 14 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 15 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life.

 Table 3-18.
 Predicted Terminal Distress of Type I-A Concrete Pavement Using Calera

 Aggregate
 Aggregate

	Calera Aggregate						
D	istress Predicted Ta	ble (E =	498198	1 psi)			
Pavement D	istress			Slab Thio	kness (in	ı)	
Type Measurement		10	11	12	13	14	15
Terminal IRI	(in/mi)	143	147.6	70.4	90.4	81.3	63.4
Transverse Cracking	(% slabs cracked)	94.5	84.4	38.1	26.2	12.9	4.3
Mean Joint Faulting	(in)	0.003	0.009	0.003	0.013	0.014	0
Pass/Fa	1	Fail	Fail	Fail	Fail	Fail	Pass

3.5.3.3 River Gravel Aggregate

Table 3-19 shows the predicted terminal distresses of similar concrete pavements of Type I-A design and using concrete containing river gravel. It can be seen that when the concrete slab thickness is 15 inches or less, the pavement is predicted to have failed at the end of 50 years.

However, with a slab thickness of 16 inches, the predicted distresses are below the threshold

values, and the pavement would be considered adequate for 50-year design life.

Table 3-19.	Predicted Terminal Distress of Type I-A Concrete Pavement Using River
G	ravel

River Gravel Aggregate									
Distress Predicted ($\mathbf{E} = 4406326$)									
Pavement D			Sla	ab Thickne	ss (in)				
Туре	Measurement	10	11	12	13	14	15	16	
Terminal IRI	(in/mi)	118.2	100.1	65.5	108.3	63.2	65.3	63.6	
Transverse Cracking	(% slabs cracked)	97.2	90.5	69.5	34.5	25.4	8.9	2.4	
Mean Joint Faulting	(in)	0.001	0.003	0	0.032	0	0.003	0.001	
Pass/Fa	Pass/Fail			Fail	Fail	Fail	Fail	Pass	

3.5.4 Effects of Concrete Aggregate Type on Type I-B Pavement

This section presents the results of MEPDG analysis on the effects of concrete aggregate type on the expected performance of pavement with Type I-B design.

3.5.3.1 Brooksville Aggregate

Table 3-20 shows the predicted terminal distresses of concrete pavements of Type I-B design and using concrete containing Brooksville limestone aggregate. The flexural strength of the concrete used in the analysis was 650 psi. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement is considered adequate for 50-year design life.

 Table 3-20.
 Predicted Terminal Distress of Type I-B Concrete Pavement Using Brooksville Aggregate

Brooksville Aggregate									
Distress Predicted ($E = 4766665$ psi)									
Pavement D		Slab Thic	kness (in	s (in)					
Type Measurement		10	11	12	13				
Terminal IRI	(in/mi)	80.6	98.6	64.4	62.7				
Transverse Cracking	(% slabs cracked)	70.4	19.5	6.3	4.2				
Mean Joint Faulting	(in)	0.008	0.006	0.002	0.001				
Pass/Fail			Fail	Fail	Pass				

3.5.3.2 Calera Aggregate

Table 3-21 shows the predicted terminal distresses of similar concrete pavements of Type I-B design and using concrete containing Calera limestone aggregate. It can be seen that when the concrete slab thickness is 14 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 15 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life.

 Table 3-21.
 Predicted Terminal Distress of Type I-B Concrete Pavement Using Calera

 Aggregate

Calera Aggregate										
Distress Predicted ($\mathbf{E} = 4981981 \text{ psi}$)										
Pavement Distress				Slab Thio	ickness (in)					
Туре	Measurement	10	11	12	13	14	15			
Terminal IRI	(in/mi)	145.8	137.2	75.3	80.3	66.7	65.4			
Transverse Cracking	(% slabs cracked)	100.6	86.5	42.5	16.4	6.9	4.2			
Mean Joint Faulting	(in)	0.009	0.008	0.007	0.005	0.001	0.001			
Pass/Fai	1	Fail	Fail	Fail	Fail	Fail	Pass			

3.5.3.3 River Gravel Aggregate

Table 3-22 shows the predicted terminal distresses of similar concrete pavements of Type I-B design and using concrete containing river gravel. It can be seen that when the concrete slab thickness is 15 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 16 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life.

Table 3-22. Predicted Terminal Distress of Type I-B Concrete Pavement Using River Gravel

River Gravel Aggregate									
Distress Predicted ($\mathbf{E} = 4406326$)									
Pavement D	Pavement Distress			Sla	b Thicknes	s (in)			
Туре	Measurement	10	11	12	13	14	15	16	
Terminal IRI	(in/mi)	110.5	108.3	100.2	98.3	60.1	68.6	62.1	
Transverse Cracking	(% slabs cracked)	99.7	97.4	70.4	26.7	15.4	8.9	2.4	
Mean Joint Faulting	(in)	0.007	0.006	0.005	0.032	0	0.003	0.001	
Pass/Fa	Fail	Fail	Fail	Fail	Fail	Fail	Pass		

3.5.4 Effects of Concrete Aggregate Type on Type II Pavement

This section presents the results of MEPDG analysis on the effects of concrete aggregate type on the expected performance of pavement with Type II design.

3.5.4.1 Brooksville Aggregate

Table 3-23 shows the predicted terminal distresses of concrete pavements of Type II design and using concrete containing Brooksville limestone aggregate and with a flexural strength of 700 psi. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement is considered adequate for 50-year design life.

Brooksville Aggregate									
Distress Predicted ($E = 4766665$ psi)									
Pavement I	S	lab Th	ickness	(in)					
Type Measurement			11	12	13				
Terminal IRI	(in/mi)	63.7	63.5	63.3	66.6				
Transverse Cracking	(% slabs cracked)	68.1	39	13.8	2.3				
Mean Joint Faulting	(in)	0	0	0.001	0.004				
Pass/Fail			Fail	Fail	Pass				

3.5.4.2 Calera Aggregate

Table 3-24 shows the predicted terminal distresses of similar concrete pavements of Type II design and using concrete containing Calera limestone aggregate. It can be seen that when the concrete slab thickness is 15 inches or less, the pavement is predicted to have failed at the end of 50 years. However, with a slab thickness of 16 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life.

Table 3-24.	Predicted Terminal Distress of Type II Concrete Pavement Using Calera
	Aggregate

Calera Aggregate											
Distress Predicted ($E = 4981981$)											
Pavement Distress				Slal	o Thickne	ss (in)		<u>16</u>			
Туре	Measurement	10	11	12	13	14	15	16			
Terminal IRI	(in/mi)	102.2	70.9	81.6	64.1	72.1	63.7	63.2			
Transverse Cracking	(% slabs cracked)	95.3	81.8	31.7	22.2	12.7	5.2	1.2			
Mean Joint Faulting	(in)	0	0	0.008	0	0.009	0.002	0.001			
Pass/Fa	ail	Fail	Fail	Fail	Fail	Fail	Fail	Pass			

3.5.4.3 River Gravel Aggregate

Table 3-25shows the predicted terminal distresses of similar concrete pavements of Type II design and using concrete containing river gravel. It can be seen that when the concrete slab thickness is 15 inches or less, the pavement is predicted to have failed at the end of 50 years.

However, with a slab thickness of 16 inches, the predicted distresses are below the threshold

values, and the pavement would be considered adequate for 50-year design life.

Olavei										
	River Gravel Aggregate Distress Predicted (E = 4406326)									
Pavement 1	Pavement Distress			Sl	ab Thickn	ess (in)				
Туре	Measurement	10	11	12	13	14	15	16		
Terminal IRI	(in/mi)	147.7	71.9	64.4	90.2	84.2	76.8	80.8		
Transverse Cracking	(% slabs cracked)	97.3	90.8	70.6	30.1	14.8	8.2	2.5		
Mean Joint Faulting	(in)	0.006	0	0.003	0.025	0.015	0.02	0.028		
Pass/F	Pass/Fail			Fail	Fail	Fail	Fail	Pass		

 Table 3-25.
 Predicted Terminal Distress of Type II Concrete Pavement Using River Gravel

3.5.5 Summary of Findings on Effects of Slab Thickness and Aggregate Type

Three typical concrete pavement designs used in Florida were evaluated using the MEPDG model to assess their suitability for use as long-life concrete pavement with a design life of 50 years. The factors evaluated include the concrete slab thickness and the aggregate used in the concrete. The results of the analysis show that the concrete slab thickness and aggregate used in the concrete have significant effects on the predicted performance.

The three aggregates used in the analysis included Brooksville limestone, Calera limestone and river gravel. For concrete with the same design flexural strength, Brooksville limestone was shown to have the best predicted performance, followed by Calera limestone and the river gravel is the worst. The better performance of the Brooksville aggregate is possibly due to the relatively low elastic modulus and low coefficient of thermal expansion of concrete made with Brooksville limestone.

Among the three Florida concrete pavement designs evaluated, there appeared to be only small differences in predicted performance. Table 3-26 shows the predicted terminal distresses of the passing concrete pavements according to MEPDG. When concrete with Brooksville aggregate was used, all three designs required a minimum slab thickness of 13 inches for a 50-

year design life. Type II design shows slightly less predicted cracking than the other two designs. Type I-B designs shows slightly lower predicted faulting and roughness than the other two designs.

Table 5-20. Treated Terminal Distresses of Tassing Concrete Tavements											
		Ту	pe I-A		Ту	pe I-B		Т	Гуре II		
Agg	regate	Brooksville	Calera	River Gravel	Brooksville	Calera	River Gravel	Brooksville	Calera	River Gravel	
Slab Thick	ness (inches)	13	15	16	13	15	16	13	16	16	
	of Elasticity ^-6 psi)	4.8	5.0	4.4	4.8	5.0	4.4	4.8	5.0	4.4	
	Terminal IRI (in/mi)	74	63.4	63.6	62.7	65.4	62.1	66.6	63.2	80.8	
Pavement Distress	Transverse Cracking (% slabs cracked)	3.1	4.3	2.4	4.2	4.2	2.4	2.3	1.2	2.5	
	Mean Joint Faulting (in)	0.013	0	0.001	0.001	0.001	0.001	0.004	0.001	0.028	

 Table 3-26.
 Predicted Terminal Distresses of Passing Concrete Pavements

Note: Flexural strength of concrete used = 650 psi

3.6 Evaluation of the Effects of Modulus of Rupture of Concrete on the Performance of Florida Concrete Pavement Designs

3.6.1 Analysis to Evaluate the Effects of Modulus of Rupture using the MEPDG Model

The MEPDG model was used to evaluate the effects of modulus of rupture of concrete on the performance of the three Florida concrete pavement designs, Type I-A, Type I-B and Type II. The concrete using Brooksville aggregate, which gave the best predicted performance as presented in Section 3.5, was used in the analysis. The coefficient of thermal expansion of the concrete used was 5.68 X 10^{-6} / °F. The effects of the modulus of rupture of concrete on the performance of these three concrete pavement designs were evaluated by varying the modulus of rupture from 500 psi to 800 psi in increments of 100 psi.

Except for the inputs for the concrete material properties, the other inputs to the MEPDG model were similar to those used in the analysis as presented in Section 3.5.

3.6.2 Effects of Modulus of Rupture of Concrete on Type I-A and Type I-B Pavements

MEPDG analyses were performed on the concrete pavements using Type I-A and Type I-B design and Brooksville aggregate. Tables 3-27 and 3-28 show the predicted terminal distresses (at the end of 50-year period) of these concrete pavements with modulus of rupture of concrete of 500, 600, 700 and 800 psi. It is noted that the elastic modulus of the concrete changes as the strength of the concrete changes. The estimated elastic moduli (E) of concrete of different moduli of rupture (f_r) were determined by regression using Equation 3-28 (Tia et al., 1989).

$$E = 4.20(W^{1.5})f_r \tag{3-28}$$

Where:

E	=	Elastic modulus, psi,
W	=	Unit weight, pcf; and,
f _r	=	Modulus of rupture, psi.

The values of the elastic moduli used are also shown on Tables 3-27 and 3-28.

For Type I-A and Type I-B designs, it can be seen that when the modulus of rupture is less than or equal to 600 psi, all the concrete pavements with a slab thickness of 13 inches or less are predicted to have failed before the 50-year period. For the concrete pavement with a modulus of rupture of 700 psi, the pavement is predicted to be adequate at 50 years if the concrete slab thickness is 12 inches or higher. For the concrete pavement with a modulus of rupture of 800 psi, the pavement is predicted to be adequate at 50 years if the concrete slab thickness is 12 inches or higher. For the concrete pavement with a modulus of rupture of 800 psi, the pavement is predicted to be adequate at 50 years if the concrete slab thickness is 11

Brooksville Aggregate									
Moduli	us of Rupture 500 psi	(E=3,667,	000 psi)						
Pavement Distress			Slab Thick	kness (in)					
Туре	Measurement	10	11	12	13				
Terminal IRI	(in/mi) (% slabs	103.9	128.2	69.7	65.9				
Transverse Cracking	cracked)	99.2	97.1	91.7	78.7				
Mean Joint Faulting	(in)	0	0	0	0				
Pass/Fail		Fail	Fail	Fail	Fail				

Table 3-27. Predicted Terminal Distresses of Type I-A Concrete Pavement with Different Modulus of Rupture

Modulus of Rupture 600 psi (*E*=4,400,000 *psi*) Slab Thickness (in) **Pavement Distress** Type Measurement 10 11 12 13 Terminal IRI 75.5 (in/mi) 123.5 65.5 63.4 (% slabs 87.9 68.7 39.5 6 Transverse Cracking cracked) Mean Joint Faulting (in) 0.006 0 0 0 Pass/Fail Fail Fail Fail Fail

Modulus of Rupture 700 psi (E=5,133,000 psi)

Pavement Distress	Slab Thickness (in)						
Туре	Measurement	10	11	12	13		
Terminal IRI	(in/mi) (% slabs	98.1	63.1	71.8	63.2		
Transverse Cracking	cracked)	40.2	15.7	2.3	1.6		
Mean Joint Faulting	<i>(in)</i>	0.003	0	0.012	0		
Pass/Fail		Fail	Fail	Pass	Pass		

Pavement Distre	SS		Slab Thicl	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	64.7	63.3	64	63
Transverse Cracking	cracked)	6.9	1.5	0.3	0.1
Mean Joint Faulting	<i>(in)</i>	0.001	0	0.002	0
Pass/Fail		Fail	Pass	Pass	Pass

Modulus of Rupture 800 psi (E=5,867,000 psi)

	Brooksville Agg	regate			
Modulu	is of Rupture 500 psi	(E=3,667	,000 psi)		
Pavement Di	istress		Slab Thic	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	106.5	134.5	75.4	70.9
Transverse Cracking	cracked)	103.3	100.2	99.9	87.7
Mean Joint Faulting	(in)	0.001	0	0.001	0.002
Pass/Fail		Fail	Fail	Fail	Fail

Table 3-28.Predicted Terminal Distresses of Type I-B Concrete Pavement with Different
Modulus of Rupture

Modulus of I	Rupture 600 psi	i (E=4,400	,000 psi)		
Pavement Distress			Slab Thic	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	85.1	112.3	70.3	66.2
Transverse Cracking	cracked)	98.9	80.2	69.4	59.8
Mean Joint Faulting	(in)	0.004	0.003	0	0.001
Pass/Fail		Fail	Fail	Fail	Fail

	Modulus of Ruptur	re 700 psi (E=5,133,000 psi)	
-			

Pavement Distress	Slab Thickness (in)				
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	100.3	90.1	80.5	70.2
Transverse Cracking	cracked)	50.3	25.3	24.3	5.6
Mean Joint Faulting	(in)	0.006	0.005	0.012	0.001
Pass/Fail		Fail	Fail	Fail	Pass

Modulus	of Rupture 800 psi	(E=5,867	,000 psi)		
Pavement Dist	ress		Slab Thick	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	68.7	65.3	58.9	50.3
Transverse Cracking	cracked)	10.5	9.6	2.3	1.1
Mean Joint Faulting	(in)	0.001	0.001	0.002	0
Pass/Fail		Fail	Fail	Pass	Pass

Modulus of Runture 800 nsi (F-5.867.000 nsi)

3.6.3 Effects of Modulus of Rupture of Concrete on Type II Pavement

Similar MEPDG Analyses were performed on the concrete pavements using Type II design and Brooksville aggregate, with the modulus of rupture of concrete varying from 500 psi to 800 psi in increments of 100 psi. Table 3-29 shows the predicted terminal distresses of these concrete pavements with modulus of rupture of concrete of 500, 600, 700 and 800 psi.

It can be seen that when the modulus of rupture is less than or equal to 600 psi, all the concrete pavements with a slab thickness of 13 inches or less are predicted to have failed before the 50-year period. For the concrete pavement with a modulus of rupture of 700 psi, the pavement is predicted to be adequate at 50 years if the concrete slab thickness is 12 inches or higher. For the concrete pavement with a modulus of rupture of 800 psi, the pavement is predicted to be adequate at 50 years if the concrete slab thickness is 11 inches or more.

3.6.4 Summary of Findings on Effects of Modulus of Concrete

According to the results of MEPDG analyses on the Florida concrete pavement designs, it can be seen that when the same aggregate is used in the concrete, increasing the modulus of rupture of the concrete will give improved performance and increased service life to the pavement.

Brooksville Aggregate								
Modul	us of Rupture 500 ps	i (E=3,66'	7,000 psi)					
Pavement Di	stress		Slab Thic	kness (in)				
Туре	Measurement	10	11	12	1			
Terminal IRI	(in/mi)	102.7	126.2	119.2	12			
	(% slabs							
Transverse Cracking	cracked)	89.2	98.3	93.2	80.			
Mean Joint Faulting	(in)	0.003	0.002	0.005	0.00			
Pass/Fail		Fail	Fail	Fail	Fail			

Table 3-29. Predicted Terminal Distresses of Type II Concrete Pavement with Different Modulus of Rupture

Modulus of J	Kupture 600 ps	5i (E=4,400),000 psi)		
Pavement Distress			Slab Thic	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi)	75.2	124.2	80.3	76.3
	(% slabs				
Transverse Cracking	cracked)	89.3	70.3	56.8	6.8
Mean Joint Faulting	(in)	0.006	0.007	0.004	0.013
Pass/Fail		Fail	Fail	Fail	Fail

Modulus of I	Rupture 700 ps	i (E=5,133	3,000 psi)		
Pavement Distress			Slab Thic	kness (in)	
Туре	Measurement	10	11	12	13
Terminal IRI	(in/mi) (% slabs	56.4	80.5	64.6	65.3
Transverse Cracking	cracked)	39.9	14.7	4.7	1.7
Mean Joint Faulting	(in)	0.008	0.009	0.009	0.003
Pass/Fail		Fail	Fail	Pass	Pass

Modulus of Rupture 800 psi (E=5,867,000 psi)								
Pavement Dis	tress		Slab Thic	kness (in)				
Туре	Measurement	10	11	12	13			
Terminal IRI	(in/mi) (% slabs	65.8	63.6	70.9	71.3			
Transverse Cracking	cracked)	6.7	1.6	0.5	0.4			
Mean Joint Faulting	(in)	0.001	0	0.016	0.015			
Pass/Fail		Fail	Pass	Pass	Pass			

. e **T**

3.7 Evaluation of the Effects of Base Type on the Performance of Florida Concrete Pavement Designs

3.7.1 Analysis to Evaluate the Effects of Base Type using the MEPDG Model

The MEPDG model was used to evaluate the effects of base type and its associated parameters on the predicted performance of Florida concrete pavement designs, Types I-A, I-B and II.

3.7.1.1 Design Criteria

Similar to the previous analyses, the design life of the concrete pavements to be analyzed was set to be 50 years and the same failure criteria as described in Section 3.2.1 of this chapter were used. The same climatic conditions as described in Section 3.2.3 were used. The same traffic inputs as described in Section 3.4 were used in this analysis.

3.7.1.2 Concrete Slab and Joint

The concrete slab thickness was varied from 10 to 14 inches in the analysis. The same joint spacing of 15 ft was used. Doweled transverse joints using dowel diameter of 1.5 inches with dowel bar spacing of 12 inches c/c was used.

3.7.1.3 Concrete Properties

Typical properties of pavement concrete made with Brooksville limestone were used in this set of analyses. The following properties of concrete were used:

> Unit weight = 145 pcf Coefficient of thermal expansion = $5.68 \times 10^{-6} / {}^{\circ}F$ Flexural strength = 650 psiElastic modulus = $4.77 \times 10^{6} \text{ psi}$

3.7.1.4 Base Types

Three different types of base materials were evaluated in MEPDG analyses. They were (1) crushed stone, (2) permeable gravel, and (3) permeable asphalt(Type I-A)/non-permeable (Type I-B).

For the crushed stone base material, the following elastic modulus values were used:

- 20,000 psi
- 30,000 psi
- 40,000 psi

For the permeable gravel base material, the following elastic modulus values were used:

- 10,000 psi
- 15,000 psi
- 20,000 psi

For the asphalt base material, the following grades of asphalt were used:

- PG 64-22
- PG 70-22
- PG 76-22

Three different base layer thicknesses were used. For the Type I-A design, the three

different base thicknesses used were 4, 6 and 8 inches. For the Type II design, the base

thicknesses evaluated were 6, 8 and 10 inches.

Two different levels of erodibility of the base materials were used in the analyses. They were:

(1) High erodibility with an Erodibility Factor of 5

(2) Low erodibility with an Erodibility Factor of 1

Two conditions of friction between the concrete and the base layers were used in the analyses. They were:

(1) Zero friction
 (2) Full friction

Table 3-12 shows the inputs used for the edge support and base properties for the three

pavement designs analyzed. A widened slab of 13 feet was used in the analysis. Table 3-13

shows the strength properties of the granular permeable base used. The properties of the structural asphalt base material are shown in Table 3-14. The properties of the A-3 soil base are shown in Table 3-15. The properties of the LBR40 stabilized subgrade are shown in Table 3-16.

3.7.2 Effects of Base Type on Type I-A Pavement

Table 3-30 shows the predicted terminal distresses of concrete pavements of Type I-A design using concrete containing Brooksville limestone aggregate with a base thickness of 4 inches and varying the stiffness of the base materials (by varying the elastic modulus of the crushed stone and gravel, or by varying the grade of the asphalt in the asphalt base). A high erodibility factor of 5 and zero friction between the base and the concrete slab were used in the analyses. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years for all base materials considered. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life with either crushed stone, permeable granular aggregate or permeable asphalt. The type of base material and the stiffness of the base material appear to have no significant effect on the predicted performance according to the results of the MEPDG analyses.

Tables 3-31 and 3-32 show the predicted terminal distresses of similar concrete pavements of Type I-A design with base thickness of 6 inches and 8 inches, respectively. It can be seen that the predicted performance of the pavement appears to have improved slightly with an increase in base thickness. For the designs with 6-inch base, two of the designs with a concrete slab thickness of 12 inches have predicted distresses below the threshold values. These two designs are (1) one using crushed stone base with an elastic modulus of 20,000 psi, and (2) one using permeable asphalt base using PG 64-22 asphalt. For the designs with 8-inch base, three of the designs with a concrete slab thickness of 12 inches have predicted distress of 12 inches have predicted distress below the threshold with 8-inch base, three of the designs with a concrete slab thickness of 12 inches have predicted stores below the threshold base.

67

values. These three designs are (1) one using crushed stone base with an elastic modulus of

40,000 psi, (2) one using permeable asphalt base using PG 64-22 asphalt, and (3) one using

permeable asphalt base using PG 70-22 asphalt.

Table 3-30.	Predicted Distresses of Type I-A Concrete Pavement Using Brooksville
A	ggregate and a 4 inch Base Layer (with High Erodibility and No Friction)

	Bro	ooksville	e Aggreg	ate PCC				
		Asphalt F	Properties	PCC S	Slab Thickr (Inches)			
	Mashukus	Superpav Gra	ve Binder ding					
	Modulus (psi)	Low Temp (*C)	High Temp (*C)	12	13	14		
				(1) 63.1	65.1	66.1		
	20000	N/A	N/A	(2) 12.6	3.1	2.3		
				(3) 0	0	0.004		
Crushed				73.7	63.1	63.2		
Stone	30000	N/A	N/A	5.1	3.2	1.9		
Otorio				0.011	0	(
				68.6	61.1	63.1		
	40000	N/A	N/A	14.5	2.7	1.9		
				0.004	0	(
				80.9	63.4	63.2		
	10000	N/A	N/A	13.4	2.4	0.7		
				0.012	0	(
Permeable				64.1	63.5	63.5		
Gravel	15000	N/A	N/A	9	3	1		
Clavel				0.001	0.001	(
				65.4	63.5	64.5		
	20000	N/A	N/A	12.6	3.1	1.4		
				0.002	0	0.002		
				63.3	63.3	63.1		
		-22	64	6.2	3.4	0.3		
				0	0	(
Permeable				68.8	63.1	63.2		
Asphalt	N/A	-22	70	6.2	3.4	0		
rispitait				0.001	0	(
				63.2	63.1	63.7		
		-22	76	6.2	3.4	C		
				0	0.002	0.001		

Note: (1) IRI (in/mi)

(2) Transverse Cracking (% Slabs Cracked)

		Brooks	sville Ag	gregate P	22				
	Modulus	Superpar	Properties ve Binder ding	PCC Slab Thickness (Inches)					
	(psi)	Low Temp (*C)	High Temp (*C)	11	12	13	14		
				(1) 63.3	63.2	63.1	62.1		
	20000	N/A	N/A	(2) 38.8	2.5	3	1.6		
				(3)0.014	0.002	0	C		
Omisels e d					63.1	63.1	63.1		
Crushed Stone	30000	N/A	N/A		7.7	3.2	1.6		
Otone					0	0	(
	40000				63.1	63.2	63.1		
		N/A	N/A		5	2.9	1.8		
					0.029	0	(
					63.2	63.8	63.2		
	10000	N/A	N/A		9.6	2.1	1.3		
					0	0.001	(
Permeable					63.1	63.1	63.′		
Gravel	15000	N/A	N/A		10.3	2.5	1.5		
Claver					0	0	(
					63.1	63.1	63.2		
	20000	N/A	N/A		8.9	3	1.6		
					0	0	(
				66.2	63.1	61.2	60.4		
		-22	64	25.8	2.3	3.2	0.2		
				0.004	0.002	0	(
Dormochic					63.3	63.2	63.′		
Permeable Asphalt	N/A	-22	70		13.3	3.1	0.2		
Aophan					0	0	(
					63.3	63.1	63.		
		-22	76		12.1	3.1	0.1		
					0	0	(

Table 3-31.Predicted Distresses of Type I-A Concrete Pavement Using Brooksville
Aggregate and a 6 inch Base Layer (with High Erodibility and No Friction)

(2) Transverse Cracking (% Slabs Cracked)

		Brooks	sville Agg	regate P	229		
	Modulus	Superpar	Properties ve Binder ding	Slab Thick	ness (Inch	es)	
	(psi)	Low Temp (*C)	High Temp (*C)	11	12	13	14
				(1)	63.2	62.8	63.1
	20000	N/A	N/A	(2)	8.5	3.2	1.2
				(3)	0	0.013	C
Cruchad					63.2	62.7	61.5
Crushed Stone	30000	N/A	N/A		6.3	3.3	0.5
Otone					0	0.001	0.002
				63.2	63.2	63.2	63.6
	40000	N/A	N/A	4.8	3.8	2.8	0.2
				0	0	0	(
					64	63.3	71.8
	10000	N/A	N/A		10.5	2.2	1.2
					0.001	0	0.014
Permeable					77.4	63.1	64.6
Gravel	15000	N/A	N/A		9.6	2.3	1.3
Charton					0.011	0	0.002
					63.1	63.1	68.6
	20000	N/A	N/A		8.5	3.2	1.2
					0	0	0.009
				74.1	66.5	63.4	62
		-22	64	12.1	3	2.1	1.8
				0.001	0.001	0.002	0.00
Permeable				74.8	67.1	63.4	62.3
Asphalt	N/A	-22	70	13	3.7	2.5	1.2
nophun				0.001	0.001	0.002	0.00
					73.9	66.4	63.
		-22	76		11.9	2.9	0.2
					0.001	0.001	(

Table 3-32.Predicted Distresses of Type I-A Concrete Pavement Using Brooksville
Aggregate and a 8 inch Base Layer (with High Erodibility and No Friction)

(2) Transverse Cracking (% Slabs Cracked)

3.7.3 Effects of Base Type on Type I-B Pavement

Table 3-33 shows the predicted terminal distresses of concrete pavements of Type I-B design using concrete containing Brooksville limestone aggregate with a base thickness of 4 inches and varying the asphalt concrete grade of the base material. Similarly, a high erodibility factor of 5 and zero friction were used in the analyses. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years for all base materials considered. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life with either PG 70-22 or PG 76-22.

Table 3-33.Predicted Distresses of Type I-B Concrete Pavement Using a 4 inch Asphalt
Concrete Base Layer (with High Erodibility and No Friction)

		Asphalt Properties Superpave Binder Grading			PCC S	Slab Thickne	ess (Inches)	
	Modulus (psi)	Low Temp (*C)	High Temp (*C)	10	11	12	13	14
					(1)	69.4	66.7	65.4
		-22	64		(2)	7.3	6.9	4.2
					(3)	0.002	0.001	0.001
						64.4	62.7	60.9
Asphalt Concrete	N/A	-22	70			6.3	4.2	3.5
Concrete						0.002	0.001	0.001
						61.3	60.5	59.2
		-22	76			6.2	3.3	2
						0.001	0.001	0.001

Note: (1) IRI (in/mi)

(2) Transverse Cracking (% Slabs Cracked)

3.7.4 Effects of Base Type on Type II Pavement

Table 3-34 shows the predicted terminal distresses of concrete pavements of Type II design using concrete containing Brooksville limestone aggregate with a base thickness of 6 inches and varying the stiffness of the base materials. Similarly, a high erodibility factor of 5 and zero friction were used in the analyses. It can be seen that when the concrete slab thickness is 12 inches or less, the pavement is predicted to have failed at the end of 50 years for all base materials considered. However, with a slab thickness of 13 inches, the predicted distresses are below the threshold values, and the pavement would be considered adequate for 50-year design life with either crushed stone, permeable granular aggregate or permeable asphalt. The type of base material and the stiffness of the base material appear to have no significant effect on the predicted performance according to the results of the MEPDG analyses.

Tables 3-35 and 3-36 show the predicted terminal distresses of similar concrete pavements of Type II design with base thickness of 8 inches and 10 inches, respectively. It can be seen that the predicted performance of the pavement appears to have improved slightly with an increase in base thickness. For the designs with 8-inch base, three of the designs with a concrete slab thickness of 12 inches have predicted distresses below the threshold values. These three designs are (1) one using crushed stone base with an elastic modulus of 20,000 psi, (2) one using permeable gravel base with an elastic modulus of 20,000 psi, and (3) one using permeable asphalt base using PG 76-22 asphalt. For the designs with 10-inch base, three of the designs with a concrete slab thickness of 12 inches have predicted distress below the threshold values. These three designs with a concrete slab thickness of 12 inches have predicted distress with 10-inch base, three of the designs with a concrete slab thickness of 12 inches have predicted distress below the threshold values. These three designs with a concrete slab thickness of 12 inches have predicted distress below the threshold values. These three designs are (1) one using permeable gravel base with an elastic modulus of 20,000 psi, (2) one using permeable asphalt base using PG 70-22 asphalt. Base using PG 70-22 asphalt, and (3) one using permeable asphalt base using PG 70-22 asphalt.

72

		Brooks	sville Aggre	gate PCC			
	Asphalt Properti Superpave Bind Grading		ve Binder	PCC S	lab Thickne	ess (Inches))
	Modulus (psi)	Low Temp (*C)	High Temp (*C)		12	13	14
				(1)	74.5	72.2	70.7
	20000	N/A	N/A	(2)	7	2.6	2.4
				(3)	0.011	0.012	0.011
Cruchad					81.2	73.2	71.9
Crushed Stone	30000	N/A	N/A		14.5	3.6	1.8
Otone					0.011	0.012	0.010
					81	73.6	71.4
	40000	N/A	N/A		14.4	4.1	1.2
					0.011	0.013	0.012
	10000				79.3	72.4	63.8
		N/A	N/A		11.9	2.6	0
					0.011	0.01	0.001
Dermesekle		N/A			80.6	72.1	63.6
Permeable Gravel			N/A		13.6	2.3	0.2
Glaver					0.011	0.013	0.009
					73.5	72.2	69.7
	20000	N/A	N/A		5	2.5	2.1
					0.011	0.013	0.011
					76.9	66.5	63.7
		-22	64		15.5	3.1	0
					0.001	0.001	0.001
Dormochio					68.9	66.5	65
Permeable Asphalt	N/A	-22	70		5.8	3.1	0
Лэрнац					0.001	0.001	0.001
					68.9	66.7	62.6
		-22	76		5.7	3.4	0.4
					0.001	0.001	0.001

Table 3-34.Predicted Distresses of Type II Concrete Pavement Using Brooksville
Aggregate and a 6 inch Base Layer (with High Erodibility and No Friction)

(2) Transverse Cracking (% Slabs Cracked)

		Brook	sville Ag	grega	te PCC			
		Superpa	Properties ve Binder ding		PCC Sla	b Thicknes	ss (Inches)	
	Modulus (psi)	Low Temp (*C)	High Temp (*C)		11	12	13	14
				(1)	83.1	75.3	70.8	64.7
	20000	N/A	N/A	(2)	17	2.8	2.5	1.2
				(3)	0.009	0.008	0.005	0.001
Orwelsed						80.3	73.4	63.4
Crushed Stone	30000	N/A	N/A			13.8	4.1	3.2
Otoric						0.01	0.012	0.001
						80.2	71.9	69.2
	40000	N/A	N/A			13.6	2.4	1.8
						0.01	0.012	0.011
						73.3	72.2	63.9
	10000	N/A	N/A			4.7	2.5	0
						0.011	0.013	0.001
Downooklo						80.5	72.5	63.7
Permeable Gravel	15000	N/A	N/A			13.7	3	0
Olavei						0.011	0.013	0.001
					81.1	72.3	69.8	63.5
	20000	N/A	N/A		14.6	2.8	2.2	1.7
					0.011	0.012	0.003	0.002
						73	63.5	63.2
		-22	64			10.9	2.3	2.1
						0.001	0.001	0.001
Democrahile						71.8	66.8	59.6
Permeable Asphalt	N/A	-22	70			5.4	3.4	2.8
Asphalt						0.001	0.001	0.001
					70.9	66.5	64.6	63.5
		-22	76		8.3	3	2.6	2.1
					0.001	0.001	0.001	0.001

Table 3-35.Predicted Distresses of Type II Concrete Pavement Using BrooksvilleAggregate and a 8 inch Base Layer (with High Erodibility and No Friction)

(2) Transverse Cracking (% Slabs Cracked)

		Brook	sville Ag	ggrega	te PCC			
		Superpa	Properties ve Binder ding		PCC Sla	b Thicknes	ss (Inches)	
	Modulus (psi)	Low Temp (*C)	High Temp (*C)	10	11	12	13	14
					(1)	87.7	73.4	70.5
	20000	N/A	N/A		(2)	9.7	2.1	1.2
					(3)	0.01	0.011	0.009
Crushed						80.3	71.9	65.4
Stone	30000	N/A	N/A			13.9	2.6	2.3
Clone						0.01	0.012	0.009
						80.7	73.5	64
	40000	N/A	N/A			14.5	2.4	2
						0.01	0.009	0.008
	10000					73.1	72.1	71.4
		N/A	N/A			4.6	2.5	1.3
						0.011	0.013	0.013
Permeable						77.7	71.8	71.5
Gravel	15000	N/A	N/A			10.5	2.3	1.6
Claren						0.011	0.012	0.013
					77.7	76.3	71.8	71.2
	20000	N/A	N/A		10.7	3.2	2.5	1.4
					0.01	0.009	0.008	0.008
						71.7	66.2	62.3
		-22	64			9.3	2.7	2.2
						0.001	0.001	0
Permeable					74.8	65.2	62.5	59.5
Asphalt	N/A	-22	70		13	2.7	2	1.5
					0.001	0.001	0.001	0
					73.9	67.1	65.7	60.7
		-22	76		12	3.8	2.8	2.1
					0.001	0.001	0.002	0.001

Table 3-36.Predicted Distresses of Type II Concrete Pavement Using BrooksvilleAggregate and a 10 inch Base Layer (with High Erodibility and No Friction)

(2) Transverse Cracking (% Slabs Cracked)

3.7.5 Effects of Erodibility Factor

In the analyses as presented in the previous sections, a high erodibility factor of 5 and zero friction between the base and the concrete slab were used. Additional MEPDG analyses were performed to see how the predicted performance would be affected if a low erodibility factor of 1 was used. Table 3-37 presents the predicted terminal distresses of concrete pavements of Type I-A design using concrete containing Brooksville limestone aggregate with a base thickness of 8 inches and varying the stiffness of the base materials. A low erodibility factor of 1 and zero friction between the base and the concrete slab were used in the analyses. The results in this table can be compared with the corresponding results in Table 3-32, where similar designs are analyzed except that a high erodibility factor of 5 was used there. It can be seen that the predicted performance as shown in Table 3-37 are not much different from those in Table 3-32. The erodibility factor appears to have minimal effects on the predicted performance from the MEPDG analyses.

	Madulua		Properties ve Binder ding		PCC Slab	Thickness	(Inches)	
	Modulus (psi)	Low Temp (*C)	High Temp (*C)	10	11	12	13	14
					(1)	63.3	63.1	61
	20000	N/A	N/A		(2)	8.5	3.2	1
					(3)	0	0	
Orwebed						63.1	63.5	60
Crushed Stone	30000	N/A	N/A			4.7	3.3	0
Otone						0	0	0.00
	40000				62.2	64.1	63.1	59
		N/A	N/A		4.8	3.9	2.8	1
					0	0.001	0	
						65.6	63.7	60
	10000	N/A	N/A			10.5	2.2	1
						0.002	0.001	0.00
Damaaakia						67.5	63.1	59
Permeable Gravel	15000	N/A	N/A			9.6	2.3	
Glaver						0.003	0	0.00
						64.1	63.4	61
	20000	N/A	N/A			8.5	3.2	2
						0.001	0	0.00
					65.1	63.8	63.4	62
		-22	64		13.5	3.2	3	2
					0	0	0.002	0.00
					63.2	63.1	64	6
Permeable Asphalt	N/A	-22	70		12.4	3.1	3.1	2
ләрнаң					0	0	0.003	0.00
						65.4	65.9	69
		-22	76			12.1	3.1	2
						0	0.001	0.00

Table 3-37. Predicted Distresses of Type I-A Concrete Pavement Using Brooksville Aggregate and a 8 inch Base Layer (with Low Erodibility and No Friction)

(1) IRI (in/mi)

(2) Transverse Cracking (% Slabs Cracked)

3.7.6 Effects of Friction

In the analyses as presented in the previous sections, zero friction between the base and the concrete slab was used. Additional MEPDG analyses were performed to see how the predicted performance would be affected if a high friction factor of 5 was used. Table 3-38 presents the predicted terminal distresses of concrete pavements of Type I-A design using concrete containing Brooksville limestone aggregate with a base thickness of 8 inches and varying the stiffness of the base materials. A low erodibility factor of 1 and a friction factor of 5 were used in the analyses. The results in this table can be compared with the corresponding results in Table 3-37, where similar designs are analyzed except that no friction was used there. It can be seen that the predicted performance as shown in Table 3-38 are not much different from those in Table 3-37. The friction factor appears to have minimal effects on the predicted performance from the MEPDG analyses.

			r ooksville Properties	Aggreg	Jate PCC PCC Slab	Thickness	(Inches)	
	Markelus	Superpa	ve Binder ding		100 0140	THERIESS	(incres)	
	Modulus (psi)	Low Temp (*C)	High Temp (*C)	10	11	12	13	14
					(1)	64.6	72.7	63.6
	20000	N/A	N/A		(2)	7.1	3.1	0
					(3)	0.002	0.013	0.001
						71.9	72.6	63.3
Crushed Stone	30000	N/A	N/A			4.5	3.1	0.2
Stone						0.01	0.012	0
					78	65.3	69.9	71.6
	40000	N/A	N/A		4.7	3.6	2.6	1.7
					0.003	0.002	0.01	0.013
						63.2	72.4	63.1
	10000	N/A	N/A			9.9	2.3	1.2
						0	0.014	0
Dormochio						76.5	63.3	68.9
Permeable Gravel	15000	N/A	N/A			8.6	2.3	1.3
Clavel						0.011	0	0.009
						63.3	72.7	71.4
	20000	N/A	N/A			7.1	3.1	1.3
						0	0.013	0.013
					70.1	65.6	63.4	62.2
		-22	64		7.2	1.8	1.5	1
					0.001	0.001	0.001	0.001
Permeable					70.3	65.8	62.4	60.5
Asphalt	N/A	-22	70		7.6	2.1	1.5	0.9
, opriait					0.001	0.001	0.001	0.001
						69.7	65.3	64.6
		-22	76			6.8	1.6	1
						0.001	0.001	0.001

Table 3-38.Predicted Distresses of Type I-A Concrete Pavement Using Brooksville
Aggregate and a 8 inch Base Layer (with Low Erodibility and Full Friction)

Note: (1) IRI (in/mi)

(2) Transverse Cracking (% Slabs Cracked)

3.7.7 Summary of Findings on the Effects of Base Type

MEPDG analyses were performed to evaluate the effects of (1) types of base material, (2) stiffness of the base material, (3) erodibility of the base material, and (4) friction between the concrete and base layer on the predicted performance of Type I-A, Type I-B and Type II concrete pavement designs used in Florida. The predicted performance of the pavement appears to have improved slightly with an increase in base thickness. However, the type of base material and the stiffness of the base material appear to have no significant effect on the predicted performance according to the results of the MEPDG analyses. Using different erodibility factor and friction factor for the base materials appear to have no significant effect on the predicted performance according to the results of the MEPDG analyses.

3.8 Evaluation of Effects of Incremental AADTT on Performance of Florida Concrete Pavement Designs

3.8.1 Analysis to Evaluate the Effects of Incremental AADTT

In all the analyses presented in the previous sections in this chapter, an AADTT (Annual Average Daily Truck Traffic) of 4000 was used as the initial traffic. The effects of increased truck traffic on the performance of the three Florida Concrete Pavement Designs were evaluated using the MEPDG model and are presented in this section.

3.8.1.1 Concrete Slab and Joint

A concrete slab thickness of 13 inches was used in the analysis. The same joint spacing of 15 ft was used. Doweled transverse joints using dowel diameter of 1.5 inches with dowel bar spacing of 12 inches c/c was used.

3.8.1.2 Concrete Properties

Typical properties of pavement concrete made with Brooksville limestone were used in this set of analyses. The following properties of concrete were used:

> Unit weight = 145 pcf Coefficient of thermal expansion = $5.68 \times 10^{-6} / {}^{\circ}F$ Flexural strength = 650 psiElastic modulus = $4.77 \times 10^{6} \text{ psi}$

3.8.1.3 Edge Support and Base Properties

Table 3-12 shows the inputs used for the edge support and base properties for the two pavement designs analyzed. In order to obtain conservative predictions, the base and subbase materials were modeled as highly erodible with Erodibility Factor of 5. Zero friction was chosen to model the interaction between the concrete and the base layers.

The permeable granular base in Type I-A and Type II designs was modeled to have an elastic modulus of 40,000 psi, a Poisson's ratio of 0.35 and a coefficient of lateral pressure of 0.5.

A widened slab of 13 feet was used in the analysis. The properties of the structural asphalt base material are shown in Table 3-14. The properties of the A-3 soil base are shown in Table 3-15. The properties of the LBR40 stabilized subgrade are shown in Table 3-16.

3.8.1.4 Traffic Inputs

The truck traffic inputs to the MEPDG model are shown in Table 3-39. Analyses were made using different initial Annual Average Daily Truck Traffic (AADTT) varying from 4,000 to 22,000. A 50-year design life was used. An annual traffic growth rate of 4% for all truck types was used. The same climatic conditions as described in Section 3.2.3 were used.

Table 3-39.	Truck Traffic Inputs to the MEPDG Model	
	Initial two-way AADTT:	4,000 to 22,000
	Number of lanes in design direction:	2
	Percent of trucks in design direction (%):	50
	Percent of trucks in design lane (%):	95
	Operational speed (mph):	60

3.8.2 Effects of Incremental Truck Traffic on Type I-A Pavement

The result of this sensitivity analysis are presented in Table 3-40 which shows the predicted terminal distresses of the Type I-A pavement at the end of 50-year life for the various values of initial two-way AADTT. If one or more of the predicted distresses at the end of the design period exceed the acceptable threshold values, the analyzed pavement would be considered to have failed for the design period. It can be seen that the predicted performance of Type I-A design was satisfactory up to an initial AADTT of 18,000. When an initial AADTT of

19,000 was used, the predicted transverse cracking exceeded the threshold transverse cracking at 95% reliability.

Traffic	Distress	Perform	ance Crite	ria
Initial Two- way AADTT		Threshold Distress	Threshold Distress at 95% Reliability	Distress Predicted
		150	100	64 0
4000	Terminal IRI (in/mi)	172	123	64.9
4000	Transverse Cracking (% slabs cracked)	15	4.3	0.2
	Mean Joint Faulting (in)	0.12	0.034	0.003
	Terminal IRI (in/mi)	172	123	72.6
6000	Transverse Cracking (% slabs cracked)	15	4.3	0.5
	Mean Joint Faulting (in)	0.12	0.034	0.017
	Terminal IRI (in/mi)	172	123	75.3
8000	Transverse Cracking (% slabs cracked)	15	4.3	0.9
	Mean Joint Faulting (in)	0.12	0.034	0.004
	Terminal IRI (in/mi)	172	123	79.6
10000	Transverse Cracking (% slabs cracked)	15	4.3	1.4
	Mean Joint Faulting (in)	0.12	0.034	0.029
	Torminal IBI (in/mi)	172	123	86.6
15000	Terminal IRI (in/mi)	172	4.3	80.0 3
15000	Transverse Cracking (% slabs cracked) Mean Joint Faulting (in)	0.12	0.034	3 0.04
	Mean Joint Faulting (III)	0.12	0.034	0.04
	Terminal IRI (in/mi)	172	123	90.5
18000	Transverse Cracking (% slabs cracked)	15	4.3	4.3
	Mean Joint Faulting (in)	0.12	0.034	0.034
	Terminal IRI (in/mi)	172	123	91.8
19000	Transverse Cracking (% slabs cracked)	15	4.3	4.8
	Mean Joint Faulting (in)	0.12	0.034	0.047

 Table 3-40.
 Predicted Distresses of Type I-A Concrete Pavement at the End of 50-Year

 Life

3.8.3 Effects of Incremental Truck Traffic on Type I-B Pavement

The result of this sensitivity analysis are presented on Table 3-41 which shows the predicted terminal distresses of the Type I-B pavement at the end of 50-year life for the various values of initial two-way AADTT. It can be seen that the predicted performance of Type I-B design was satisfactory up to an initial AADTT of 17,000. When an initial AADTT of 18,000 was used, the predicted transverse cracking exceeded the threshold transverse cracking at 95% reliability.

	Life			
Traffic	Distress	Performance	ce Criteria	
			Threshold	
Initial Two-way			Distress at	
AADTT		Threshold	95%	Distress
		Distress	Reliability	Predicted
	Terminal IRI (in/mi)	172	123	66.2
4000	Transverse Cracking (% slabs cracked)	15	4.3	3.2
	Mean Joint Faulting (in)	0.12	0.034	0.004
	Terminal IRI (in/mi)	172	123	80.2
6000	Transverse Cracking (% slabs cracked)	15	4.3	4.5
	Mean Joint Faulting (in)	0.12	0.034	0.007
	Terminal IRI (in/mi)	172	123	76.6
8000	Transverse Cracking (% slabs cracked)	15	4.3	5.9
	Mean Joint Faulting (in)	0.12	0.034	0.006
	Terminal IRI (in/mi)	172	123	84.7
10000	Transverse Cracking (% slabs cracked)	15	4.3	6.4
	Mean Joint Faulting (in)	0.12	0.034	0.029
	Terminal IRI (in/mi)	172	123	90.2
15000	Transverse Cracking (% slabs cracked)	15	4.3	3.3
	Mean Joint Faulting (in)	0.12	0.034	0.030
	Terminal IRI (in/mi)	172	123	93.4
17000	Transverse Cracking (% slabs cracked)	15	4.3	4.0
	Mean Joint Faulting (in)	0.12	0.034	0.032
	Terminal IRI (in/mi)	172	123	95.2
18000	Transverse Cracking (% slabs cracked)	15	4.3	4.7
	Mean Joint Faulting (in)	0.12	0.034	0.055

 Table 3-41.
 Predicted Distresses of Type I-B Concrete Pavement at the End of 50-Year

 Life

_

3.8.4 Effects of Incremental Truck Traffic on Type II Pavement

The result of this sensitivity analysis are presented on Table 3-42 which shows the predicted terminal distresses of the Type II pavement at the end of 50-year life for the various values of initial two-way AADTT. It can be seen that the predicted performance of Type II design was satisfactory up to an initial AADTT of 20,000. When an initial AADTT of 21,000 was used, the predicted transverse cracking exceeded the threshold transverse cracking at 95% reliability.

3.8.5 Summary of Findings on Effects of Incremental Truck Traffic

The MEPDG analysis results show that Type I-A concrete pavement design can have a 50year service life with an initial AADTT up to 18,000, Type I-B can have a 50-year service life with an initial AADTT up to 17,000, while Type II design can have a 50-year service life with an initial AADTT up to 20,000. Table 3-43 presents the truck traffic data on roadways in Florida with the highest AADTT values, which were obtained from the 2011 FDOT GIS databank. It can be seen that the top ten highest AADTT values in this table range from 17,408 to 22,110. Thus, an AADTT of 17,000 to 20,000 represents typical high truck traffic in Florida.

Traffic	Distress	Performance Criter Threshold			
Initial Two- way AADTT		Threshold Distress	Distress at 95% Reliability	Distres Predicte	
	Terminal IRI (in/mi)	172	123	69.	
4000	Transverse Cracking (% slabs cracked)	15	4.3	0.	
	Mean Joint Faulting (in) 123	0.12	0.034	0.01	
	Terminal IRI (in/mi)	172	123	73.	
6000	Transverse Cracking (% slabs cracked)	15	4.3	0.	
	Mean Joint Faulting (in)	0.12	0.034	0.01	
	Terminal IRI (in/mi)	172	123	76.	
8000	Transverse Cracking (% slabs cracked)	15	4.3	0.	
	Mean Joint Faulting (in)	0.12	0.034	0.02	
	Terminal IRI (in/mi)	172	123	81.	
10000	Transverse Cracking (% slabs cracked)	15	4.3	1.	
	Mean Joint Faulting (in)	0.12	0.034	0.01	
	Terminal IRI (in/mi)	172	123	86.	
15000	Transverse Cracking (% slabs cracked)	15	4.3	2.	
	Mean Joint Faulting (in)	0.12	0.034	0.03	
	Terminal IRI (in/mi)	172	123	86.	
18000	Transverse Cracking (% slabs cracked)	15	4.3	3.	
	Mean Joint Faulting (in)	0.12	0.034	0.00	
	Terminal IRI (in/mi)	172	123	92.	
20000	Transverse Cracking (% slabs cracked)	15	4.3	4.0	
	Mean Joint Faulting (in)	0.12	0.034	0.03	
	Terminal IRI (in/mi)	172	123	93.	
21000	Transverse Cracking (% slabs cracked)	15	4.3	4.	
	Mean Joint Faulting (in)	0.12	0.034	0.00	

 Table 3-42.
 Predicted Distresses of Type II Concrete Pavement at the End of 50-Year

 Life

	Die 5-45. 2011 FDO1 GIS Data Showing Koauways with the Highest AAD11							
No.	DIST	ROADWAY	DESC_FRM	DESC_TO	AADTT			
1	4	86095000	Bridge No-860535	US 1/SR 5 SB	22110			
2	4	93220000	Bridge No-930189	Bridge No-930499	21625			
3	4	86070000	86095000/EB-I595	SR 736/DAVIE BLVD	20468			
4	5	92130000	RAMP 92473001	N/A	20193			
5	5	92130000	Bridge No-920094	RAMP 92473001	20193			
6	4	86070000	Bridge No-860554	86095000/EB-I595	18972			
7	4	86070000	SR 736/DAVIE BLVD	SR 842/BROWARD BLVD	18088			
8	4	86070000	Bridge No-860530	Bridge No-860576	17952			
9	4	86070000	SR 838/SUNRISE BLVD	Bridge No-860117	17816			
10	4	86070000	Bridge No-860579	Bridge No-860554	17408			
11	4	86070000	Bridge No-860531	Bridge No-860530	17340			
12	4	86070000	Bridge No-860576	Bridge No-860579	17204			
13	4	86070000	Bridge No-860117	Bridge No-860130	17160			
14	4	86070000	Bridge No-860124	PALM BCH. CO. LN.	16767			
15	4	93220000	N/A	10TH AVE N	16384			
16	4	86070000	DADE CO. LN.	Bridge No-860529	15640			
17	6	87260000	NW 58 ST	Bridge No-870964	15561			
18	5	36210000	Bridge No-360022	Bridge No-360043	15535			
19	7	10190000	Bridge No-100599	Bridge No-100601	15424			
20	7	10190000	Bridge No-100697	Bridge No-100110	15240			
21	7	10190000	Bridge No-100601	N/A	15232			
22	2	72280000	Bridge No-720334	SR 5	15191			
23	4	86070000	Bridge No-860130	Bridge No-860239	15040			
24	4	86070000	SR 842/BROWARD BLVD	SR 838/SUNRISE BLVD	14787			
25	5	36210000	Bridge No-360018	Bridge No-360022	14783			
26	8	75470000	N/A	RAMP 161 SB ON	14496			
27	5	36210000	Bridge No-360001	Bridge No-360063	14419			
28	4	93220000	HYPOLUXO RD	CR 812/LANTANA RD	14368			
29	1	16320000	HILLSBOROUGH CO LINE	ON RAMP TO I-4	14108			
30	4	93220000	N/A	Bridge No-930189	14097			

 Table 3-43.
 2011 FDOT GIS Data Showing Roadways with the Highest AADTT

3.9 Predicted Service Lives of Concrete Pavements Using Type I-A, I-B and II Designs

MEPDG analyses were performed to determine the predicted service lives of concrete pavements using Type I-A, I-B and II designs. An initial two-way AADTT of 17,000, which represents high-volume truck traffic, was used in the analysis. The concrete properties and other pavement parameters used in these analyses are the same as those described in Section 3.8. Table 3-44 presents the predicted service lives for these three designs with pavement thickness varying from 10 to 14 inches. It can be seen that when the concrete slab thickness is 13 inches or more, the expected service of all three designs are 50 years or more. Among the three designs, Type II has the best predicted performance, followed by Type I-A and then Type I-B.

	Type I-A	Type I-B	Type II	
Slab Thickness (inch)	I	Predicted Life (y	vears)	
10	27	24	28	
11	33	30	36	
12	42	40	43	
13	51	50	56	
14	56	53	60	

Table 3-44.Predicted Service Lives of Concrete Pavements Using Type I-A, I-B and II
Designs

Note: Initial AADTT = 17,000

Concrete using Brookville aggregate used: modulus of rupture of concrete = 650 psi

CHAPTER 4 EVALUATION OF DRAINAGE OF FLORIDA CONCRETE PAVEMENT DESIGNS

4.1 Overview

This chapter presents (1) some background information on drainage in concrete pavements, (2) DRIP (Drainage Requirements in Pavements) 2.0 software, and the results of analyses using the DRIP 2.0 software to evaluate the adequacy of drainage of typical Florida concrete pavements.

4.2 Drainage in Concrete Pavements

Water in the pavement structure has long been recognized as a leading cause of distress. The presence of water, free and capillary held, in pavement layers, has been documented by a number of investigators. The sources of this water are numerous, some sources are site specific (groundwater) and other are common to any pavement structure. Among the later ones is the infiltration of rainfall through unsealed cracks and through the matrix of the upper pavement layers. A study performed by Grogan (1992) showed that up to 23% of rainfall can infiltrate a pavement structure during a particular rainstorm. Similar findings have been reported by Ridgeway (1976) and by Dempsey and Robnett (1979).

The entrapped water within the pavement layers accelerates the deterioration of the pavement structure by causing premature distress of the pavement. The mechanism by which the pavement layers deteriorate has been attributed to loss of support, weakening of the subgrade, pumping of the base and/or subgrade, etc.

Free water infiltrates through the cracks and joints of a PCC pavement. As the pavement deteriorates and cracks, the amount of free water that infiltrates the structure increases. Also, water can infiltrate the system through the longitudinal/shoulder joints, as well as, through shallow ditches and medians.

In order to reduce the amount of free water which infiltrates the structure, the sealing of joints and adequate drainage systems have been implemented in pavements throughout the United States. With proper maintenance, these systems can help control water infiltration as well as prolong the life of a pavement.

The most common approach to provide drainability has been to include a permeable layer within the pavement structure to permit the speedy removal of water percolating into the pavement layer. A typical drainage system is depicted in Figure 4-1. This drainable system consists of the following elements: A permeable base, a separator layer, and an edgedrain system.

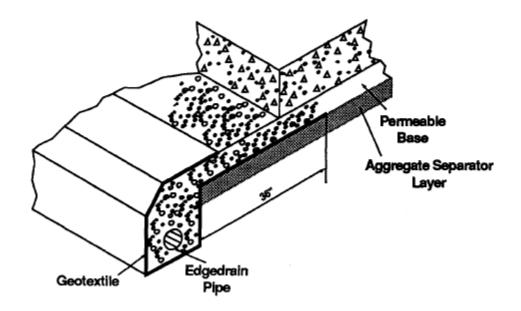


Figure 4-1. Drainable pavement system (FHWA, 1993).

4.2.1 Permeable Base

A permeable base must be permeable enough so that water can drain through it efficiently. The base course must have enough stability to support the pavement construction, and to provide the support necessary for the pavement structure.

Many states require 100-percent crushed stone with a maximum allowable L.A. Abrasion loss of 40 to 45 percent. FHWA (Federal Highway Administration) recommends that only crushed stone be used in permeable bases as it provides stability during the construction phase. Also, the soundness loss should not exceed 12 or 18 percent as determined by the sodium sulfate or magnesium sulfate tests, respectively.

There are two types of permeable bases, namely Unstabilized and Stabilized. Unstabilized bases have aggregate gradations that contain a small amount of finer-sized particles to facilitate load distribution due to the interlock of the aggregates. Stabilized bases are open-graded and thus more permeable.

To increase the permeability of unstabilized base materials, researchers have usually suggested the use of AASHTO No. 57 and 67 grade aggregates. The gradations of both of these aggregates have a 0-5% material passing No. 8 sieve. Aggregates of this gradation have lower strength and stiffness because of poor mechanical interlock between aggregates due to the lack of finer aggregates.

Stabilized base materials provide stability to the permeable base during pavement construction. The amounts of material passing the No. 8 or 16 screens are limited, thus ensuring high permeability. Stabilization of the base material can be done using asphalt at 2 to 2.5 percent by weight. When using Portland cement to stabilize, an application rate of 2 to 3 bags per cubic yard is usually recommended.

91

A large number of studies have been performed to analyze the minimum coefficient of permeability required in a drainable base, to permit the removal of excess water from the base layer. Table 4-1, shows the current permeability requirements used by different states for unbound permeable base layers.

Table 4-1.Minimum Permeability Requirements for Unbound Permeable Base Layers
(Nazef, 2011).

State	Minimum Coefficient of Permeability Requirement (ft/day)
Florida	200 – 300 (recommended)
Texas	1000
New Jersey	>1000
Kansas	1000
Louisiana	1000

It is important to note, however, that the U.S. Department of Transportation specifies a permeability criterion of 3000 ft/day for stabilized permeable bases and a permeability criterion of 1000 ft/day for unstabilized bases. The latter, is the criterion under use by many of the state agencies today as observed in Table 4-1.

4.3 DRIP 2.0 Program

The DRIP (Drainage Requirements in Pavements) 2.0 program is a Windows-based software that is used for the subsurface drainage analysis of pavements. It was developed by FHWA and Applied Research Associates, Inc. to provide design guidance for handling water that infiltrated into the pavement structure from the surface. The following sections present the factors affecting drainage in a concrete pavement as considered by the DRIP 2.0 model.

4.3.1 Water Infiltration

The major sources of inflow into the pavement structure are surface infiltration, water flow from high ground, groundwater seepage, and meltwater from ice. In this case, only surface infiltration is considered in estimating the inflow as this is the predominant factor under Florida conditions. In the case of a high water table, the amount of groundwater seepage entering the permeable base may be a concern, but subsurface drainage layers are normally not installed as a corrective measure for groundwater seepage.

4.3.1.1 Crack Infiltration

The single largest source of infiltrated water in pavements enters through cracks and joints in the surface, cracks or joints between the pavement and shoulder, through the shoulders, and from side ditches. A new pavement may have a virtually impermeable surface, but well before the end of the design life, the pavement will likely contain unsealed cracks and joint openings. The design of the permeable base should be based on the cracked surface condition and should account for the total infiltration that could be expected.

According to the FDOT Rigid Pavement Design Manual, an infiltration rate of 0.7 $ft^3/day/ft$ (28 cc/hr/cm) of joint is assumed, for an average storm duration of 10 hours and an average interval between storms of 100 hours. However, it is important to note that this infiltration rate applies only to a new pavement. As a pavement develops cracks and as joint seals deteriorate with age, the actual infiltration rate will be much higher.

4.3.1.2 Groundwater

Seasonal fluctuations of the water table (most commonly in spring and winter) can be a significant source of water (FHWA, 1993). Rarely is a pavement subsurface drainage system the most efficient way of handling water other than infiltrated free water (AASHTO, 1986). For this

reason, groundwater will not be taken into account in the drainage analyses performed in this study.

4.3.2 Computation of Infiltrated Water

Two methods have been used extensively in evaluating surface infiltration: the infiltration ratio method (Cedergren et al., 1973) and the crack infiltration method (Ridgeway, 1976). The infiltration ratio method is highly empirical and depends on both the infiltration ratio and rainfall rate. The crack infiltration method is based on the results of infiltration tests. It has been found that the infiltration is directly related to cracking. Since the crack infiltration method is more rational and is based on field measurements, it is the method that was selected in this research.

4.3.2.1 Crack Infiltration Method

Ridgeway (1976) recommended an inflow rate estimated by the water-carrying capacity of a pavement crack or joint and by an estimated joint or crack length. Ridgeway's research indicated that the condition of the crack or joint (i.e., sealed or unsealed and debris filled, wide or narrow cracks or joints) and the type of base layer underlying the pavement surface (i.e., opengraded or dense-graded) both play a role in defining the infiltration capacity of the joint/crack. The design approach presented in the FHWA Drainage Manual (Moulton and Seals, 1979) uses the crack infiltration method, and Demonstration Project 87 and the National Highway Institute (NHI) Course No. 131026 present it as the preferred method. An equation to compute the infiltration rate for "normal" conditions of a pavement is:

$$q_i = I_C \left[\frac{N_C}{W} + \frac{W_C}{(WC_S)} \right] + k_p \tag{4-1}$$

where:

 $\begin{array}{l} q_i = \text{Rate of pavement infiltration, m}^3/\text{day/m}^2 \,(\text{ft}^3/\text{day/ft}^2) \\ I_c = \text{Crack infiltration rate, m}^3/\text{day/m} \,(\text{ft}^3/\text{day/ft}) \\ N_c = \text{Number of longitudinal cracks} \\ W_c = \text{Length of contributing transverse joints or cracks, m} \,(\text{ft}) \\ W = \text{Width of permeable base, m} \,(\text{ft}) \\ C_s = \text{Spacing of contributing transverse joints or cracks, m} \,(\text{ft}) \\ k_p = \text{Pavement permeability, m/day} \,(\text{ft/day}) \end{array}$

The various dimensions of the pavement used in the equation are illustrated in Figure 4-2.

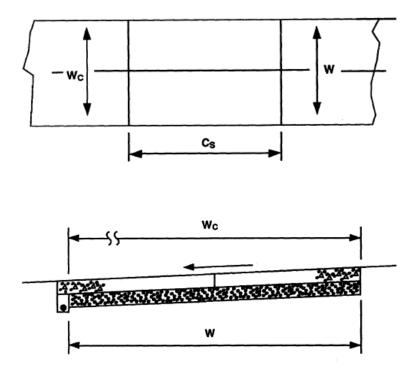


Figure 4-2. Plan and sectional view of a concrete pavement (FHWA, 1993).

4.3.3 Materials Requirement for Permeable Base

The quantification of drainage material parameters plays an important role in determining drainage capacity. Porosity and effective porosity define an aggregate material's ability to store and give up water. Among all these drainage parameters, the coefficient of permeability is the most important in the quantification of the depth of flow in the permeable base.

The gradation of aggregates comprising the permeable base has the greatest influence on permeability. Typical gradation specifications for AASHTO No. 57 and 67 are shown in Table 4-2. The recommended minimum coefficient of permeability is 1000 ft/day for use in high-type highways. The AASHTO No. 57 and AASHTO No. 67 stones, whose gradations are shown in Table 4-2, are typically modified with either asphalt or cement and have shown to provide better structural adequacy due to the interlocking of aggregate.

Table 4-2.Typical Permeable Base Gradations. (FHWA, 1999)

State		_			Per	cent Pas	sing Sie	ve Size		_	_	
	2 in	1 ½ in	l in	¾ in	% in	3/8 in	No. 4	No. 8	No. 16	No. 40	No. 50	No. 200
AASHTO #57		100	95-100		25-60		0-10	0-5				
AAHSTO #67			100	90-100		20-55	0-10	0-5				

4.3.4 Effects of Roadway Geometry

Geometric design decisions such as maximum and minimum slopes, pavement and shoulder interface, cross-sections, location of filter fabrics, overlap of fabrics, joints, separation layer location, trench dimensions, and so on are critical to pavement performance.

For concrete pavements, the permeable base is generally placed directly beneath the Portland cement concrete (PCC). A separator layer with critical drainage width (W) is placed between the permeable base and the subgrade to prevent fines from migrating into the permeable base. The total width of drainage path (W) can be computed by the following equation:

$$W = b + 2c \tag{4-2}$$

where:

W = Width of Drainage Path (ft)
b = Width of Surface (ft) [number of lanes; each lane being 12ft]
c = Distance from edge of surface to edge of base [shoulder = 3ft]

In designing the drainage of a permeable base, it is important to use the true slope and width of the permeable layer. When the longitudinal slope (S) is combined with the pavement cross slope (S_x), the true or resultant slope (S_R) of the flow path is determined by the equation:

$$S_{R} = (S^{2} + S_{x}^{2})^{1/2}$$
(4-3)

where:

 S_R = Resultant slope, ft/ft S = Longitudinal slope, ft/ft S_x = Cross slope, ft/ft

The resultant length of the flow path is:

$$L_{R} = W \left[1 + (S/S_{x})^{2} \right]^{1/2}$$
(4-4)

where,

 L_R = Resultant length of flow path through permeable base, ft W = Width of permeable base, ft

4.3.5 Design of Permeable Base

The permeable base should have a steady flow capacity equal to or greater than the inflow from the design rainfall. The solution for steady inflow, as developed by Moulton and Seals (1979), presents the required thickness of the permeable base as a function of permeability (k), resultant slope (S_R), length of drainage (LR), and rate of uniform inflow (qi). Figure 4-3

presents the relationship between k, S_R , L_R , q_i and the depth of flow (H). The base thickness should equal or exceed the computed depth of flow as obtained from Figure 4-3.

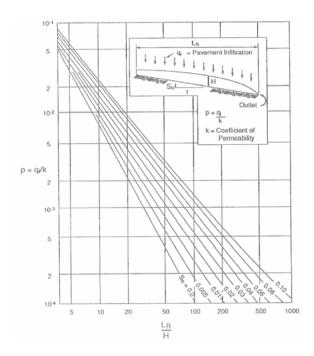


Figure 4-3. Moulton chart for depth-of-flow used in DRIP calculations (Moulton and Seals, 1979).

Under a steady-state flow condition, the following equations are used for the computation for depth of flow (H):

Case 1 where: $(S^2 - 4q / k) < 0$

$$H_{1} = \sqrt{\frac{q_{i}}{k}} L_{R} \left[\left\{ \frac{S}{\sqrt{\frac{4q_{i}}{k - S^{2}}}} \right\} \left\{ \tan^{-1} \frac{S}{\sqrt{\frac{4q_{i}}{k - S^{2}}}} - \frac{\pi}{2} \right\} \right]$$
(4-5)

Case 2 where: $(S^2 - 4q / k) > 0$

$$H_{1} = \sqrt{\frac{q_{i}}{k}} L_{R} \left[\frac{S - \sqrt{S^{2} - 4q_{i}/k}}{S + \sqrt{S^{2} - 4q_{i}/k}} \right]^{\frac{S}{2\sqrt{S^{2} - 4q_{i}/k}}}$$
(4-6)

Case 3 where: $(S^2 - 4q / k) = 0$

$$H_1 = \sqrt{\frac{q_i}{k}} L_R^{-1} \tag{4-7}$$

Where H_1 is the depth of water at the upper end of the flow path and is used as the H_{max} value, or the maximum depth of flow necessary for a particular design

Figure 4-4 illustrates how water can flow into a pavement through joints and cracks.

Figure 4-5 illustrates how the infiltrated can flow through a permeable base to an edge-drain.

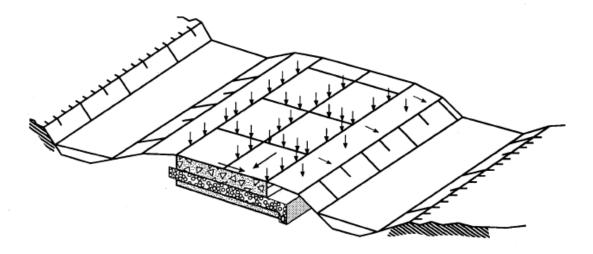


Figure 4-4. Infiltration of free-water (q_i) into PCC pavement with many lanes.

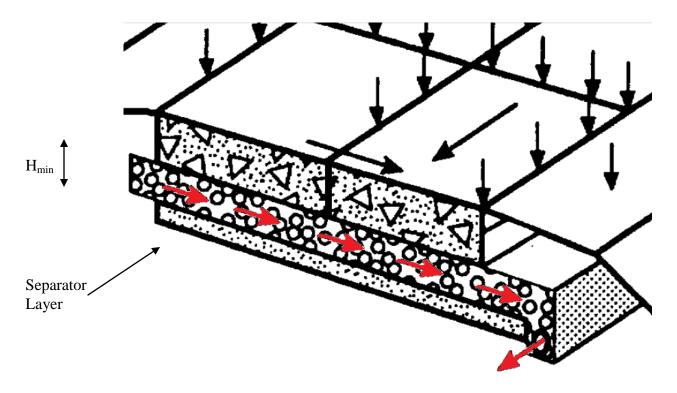


Figure 4-5. Flow of free water (q_i) through permeable base of height (H_{min}) .

4.4 Steady-Flow Drainage Analysis

A sensitivity analysis was performed using the DRIP 2.0 program to evaluate the drainage characteristics of Type I-A and Type II concrete pavement designs using the steady flow method. The results of this analysis are presented in this section. It is to be noted that since Type I-B design does not have a permeable base, this type of analysis could not be appropriately applied to Type I-B design.

The sensitivity analysis was performed by varying (A) the crack infiltration rate from 0.7 to 2.4 ft^3 /day/ft was used to represent the effects of aging and the evolution of cracks, (B) the width of draining path (from 2 to 4 lanes), (C) the pavement slope (from 2 to 6%), and (D) permeability of base material (from 200 to 1000 ft/day). The program computed the maximum depth of flow for the various combinations of conditions evaluated. The maximum computed depth of flow represents the minimum required base thickness for the drainage to be considered adequate.

The results of this sensitivity analysis on Type I-A design are presented in Tables 4-3 through 4-9, which show the required base thickness for the various combinations of these four parameters. The results of this sensitivity analysis on Type II design are presented in Tables 4-10 through 4-16.

It can be seen from these tables that the required base thickness decreases as the base permeability or the pavement slope increases, and the required base thickness increases as the crack infiltration rate or the number of lanes increases.

From Table 4-3, it can be seen that, for a 4-lane pavement with 4% slope and with a 4inch base, the permeability of the base material has to be at least 400 ft/day if the crack infiltration rate is 0.7 ft²/day. An infiltration rate of 0.7 ft²/day applies to a new pavement with few cracks on it. For an older pavement with more cracks on it, the actual infiltration rate would be higher. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 600 ft/day. If the infiltration **rate** is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 1300 ft/day.

From Table 4-4, it can be seen that, for a 3-lane pavement with 4% slope and with a 4inch base, the permeability of the base material has to be at least 300 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 500 ft/day. If the infiltration rate is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 1000 ft/day.

From Table 4-5, it can be seen that, for a 2-lane pavement with 4% slope and with a 4inch base, the required permeability of the base material is 200 ft/day if the crack infiltration rate is 0.7 ft²/day. If the infiltration rate is 1.04 ft²/day, the required permeability of the base material is 300 ft/day. If the infiltration rate is 2.4 ft²/day, the required permeability of the base material would be 500 ft/day.

From Table 4-6, it can be seen that, for a 3-lane pavement with 2% slope and with a 4inch base, the required permeability of the base material is 600 ft/day if the crack infiltration rate is 0.7 ft²/day. If the infiltration rate is 1.04 ft²/day, the required permeability of the base material is 800 ft/day. If the infiltration rate is 2.4 ft²/day, the required permeability of the base material would be 1400 ft/day.

From Table 4-7, it can be seen that, for a 3-lane pavement with 3% slope and with a 4inch base, the required permeability of the base material is 400 ft/day if the crack infiltration rate is 0.7 ft²/day. If the infiltration rate is 1.04 ft²/day, the required permeability of the base material is 600 ft/day. If the infiltration rate is 2.4 ft²/day, the required permeability of the base material would be 1700 ft/day.

102

From Table 4-8, it can be seen that, for a 3-lane pavement with 5% slope and with a 4inch base, the required permeability of the base material is 300 ft/day if the crack infiltration rate is 0.7 ft²/day. If the infiltration rate is 1.04 ft²/day, the required permeability of the base material is 400 ft/day. If the infiltration rate is 2.4 ft²/day, the required permeability of the base material would be 800 ft/day.

From Table 4-9, it can be seen that, for a 3-lane pavement with 6% slope and with a 4inch base, the required permeability of the base material is 200 ft/day if the crack infiltration rate is 0.7 ft²/day. If the infiltration rate is 1.04 ft²/day, the required permeability of the base material is 300 ft/day. If the infiltration rate is 2.4 ft²/day, the required permeability of the base material would be 700 ft/day.

Sensitivity Analysis (4 lanes; 4% slope) Minimum					
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)		
		200	6.74		
0.7	0.1063	300	4.73		
		400	3.66		
		200	9.43		
		300	6.69		
1.04	0.1579	400	5.21		
		500	4.28		
		600	3.63		
		200	11.91		
		300	8.51		
1.38	0.2096	600	4.67		
		700	4.08		
		800	3.62		
		200	14.22		
		300	10.23		
1.72	0.2612	600	5.67		
1.12	0.2012	700	4.96		
		800	4.40		
		900	3.96		
		200	16.41		
		300	11.86		
2.06	0.3128	600	6.63		
2.00	0.3120	900	4.65		
		1000	4.24		
		1100	3.89		
		200	18.49		
		300	13.42		
2.4	0.2644	600	7.56		
2.4	0.3644	900	5.32		
		1200	4.13		
		1300	3.84		

Table 4-3.Results of Steady-Flow Analysis on Type I-A Design Using 4 Lanes and 4%
Slope

Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	5.26
		300	3.69
		200	7.36
1.04	0.1585	300	5.22
		400	4.06
		500	3.34
		200	9.29
1 20	0.2102	300	6.64
1.38	0.2103	400	5.20
		500	4.28
		<u>600</u>	3.65
		200	11.09
1.72	0.2621	300	7.98
		400	6.27
		500	5.18
		600 700	4.43
		700	3.87
		200 300	12.80
		400	9.25 7.30
			7.30 6.05
2.06	0.3139	500 600	5.17
		700 800	4.53 4.03
		800 900	4.03 3.63
		200	<u> </u>
		300	
		300 400	10.47 8.28
2.4	0.2657	500	6.88
2.4	0.3657	600 700	5.90
		700	5.17
		800	4.60
		900	4.15
		1000	3.79

Table 4-4.Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 4%
Slope

Table 4-5.Results of Steady-Flow Analysis on Type I-A Design Using 2 Lanes and 4%
Slope

Type I-A – Steady Flow Method						
Sensitivity Ar	alysis (2 lanes; 4	4% slope)				
$\begin{array}{l} Crack\\ Infiltration\\ Rate (I_c)\\ (ft^3/day/ft) \end{array}$	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)			
0.7	0.1478	200	2.97			
1.04	0.2196	200 300	4.12 2.95			
1.38	0.2913	200 300	5.17 3.73			
1.72	0.3631	200 300 400	6.15 4.46 3.53			
2.06	0.4349	200 300 400 500	7.06 5.15 4.09 3.41			
2.4	0.5280	200 300 400 500	7.93 5.81 4.63 3.86			

Crack Infiltration Rate (I _c)	Rate Infiltration (q _i)	Permeability of Base	Minimum Required Thickness of Permeable Base (H _{min})
(ft ³ /day/ft)	(ft/day)	(k)(ft/day)	(inches)
		200	8.12
		300	5.92
0.7	0.1067	400	4.70
		500	3.91
		600	3.36
		200	10.93
		300	8.06
		400	6.45
1.04	0.1585	500	5.40
		600	4.66
		700	4.11
		800	3.68
		200	13.43
		300	9.98
		400	8.03
		500	6.76
1.38	0.2103	600	5.85
		700	5.17
		800	4.64
		900	4.22
		1000	3.86
		200	15.71
		300	11.75
		400	9.49
		500	8.01
		600	6.96
1.72	0.2621	700	6.17
		800	5.55
		900	5.05
		1000	4.63
		1100	4.29
		1200	3.99

Table 4-6, continue	ed.
---------------------	-----

Crack Infiltration Rate (I _c)	Rate Infiltration (q _i)	Permeability of Base	Minimum Required Thickness of Permeable Base (H _{min})
(ft ³ /day/ft)	(ft/day)	(k)(ft/day)	(inches)
		200	17.81
		300	13.38
		400	10.86
		500	9.19
		600	8.00
		700	7.10
2.06	0.2120	800	6.40
2.06	0.3139	900	5.83
		1000	5.36
		1100	4.96
		1200	4.63
		1300	4.33
		1400	4.08
		1500	3.85
		200	19.78
		300	14.92
		400	12.14
		500	10.30
		600	8.99
		700	7.99
		800	7.21
. /		900	6.58
2.4	0.3657	1000	6.05
		1100	5.61
		1200	5.23
		1300	4.91
		1400	4.62
		1500	4.37
		1600	4.14
		1700	3.94

Crack Infiltration Rate (I _c)	Rate Infiltration (q _i)	Permeability of Base	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
(ft ³ /day/ft)	(ft/day)	(k)(ft/day)	
		200	6.41
0.7	0.1067	300	4.56
		400	3.57
		200	8.82
		300	6.35
1.04	0.1585	400	5.00
		500	4.14
		600	3.54
		200	11.01
		300	8.00
		400	6.33
1.38	0.2103	500	5.26
		600	4.51
		700	3.95
		800	3.52
		200	13.04
		300	9.53
		400	7.57
		500	6.31
1.72	0.2621	600	5.43
		700	4.77
		800	4.26
		900	3.85
		1000	3.51

Table 4-7.Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 3%
Slope

Table 4-7, continued.

Crack Infiltration Rate (I _c)	Rate Infiltration (q _i)	Permeability of Base	Minimum Required Thickness of Permeable
(ft ³ /day/ft)	(ft/day)	(k)(ft/day)	Base (H _{min}) (inches)
		200	14.93
		300	10.97
		400	8.75
		500	7.32
		600	6.30
2.06	0.3139	700	5.55
		800	4.96
		900	4.49
		1000	4.10
		1100	3.78
		1200	3.51
		200	16.72
		300	12.34
		400	9.87
		500	8.27
		600	7.14
		700	6.30
2.4	0.3657	800	5.64
		900	5.11
		1000	4.68
		1100	4.31
		1200	4.00
		1300	3.74
		1400	3.50

Type I-A – Steady Flow Method Sensitivity Analysis (3 lanes; 5% slope)			
Crack Infiltration Rate (I_c) $(ft^3/day/ft)$	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	4.46
0.7	0.1007	300	3.32
		200	6.30
1.04	0.1585	300	4.42
		400	3.42
		200	8.02
1.38	0.2102	300	5.66
1.38	0.2103	400	4.40
		500	3.60
		200	9.64
		300	6.85
1.72	0.2621	400	5.34
		500	4.39
		600	3.73
		200	11.19
		300	7.99
2.06	0.3139	400	6.25
2.00	0.3139	500	5.14
		600	4.38
		700	3.82
2.4		200	12.67
		300	9.08
		400	7.12
	0.3657	500	5.88
		600	5.01
		700	4.38
		800	3.88

Table 4-8.Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 5%
Slope

Type I-A – Steady Flow Method Sensitivity Analysis (3 lanes; 6% slope)			
$\begin{array}{l} Crack\\ Infiltration\\ Rate (I_c)\\ (ft^3/day/ft) \end{array}$	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	3.86
1.04	0.1585	200	5.49
1.04	0.1365	300	3.82
		200	7.04
1.38	0.2103	300	4.93
		400	3.81
		200	8.51
1.72	0.2621	300	5.99
1.72	0.2021	400	4.64
		500	3.80
		200	9.91
	0.3139	300	7.01
2.06		400	5.45
		500	4.47
		600	3.79
2.4		200	11.27
		300	8.00
	0 2657	400	6.23
	0.3657	500	5.12
		600	4.35
		700	3.78

Table 4-9.Results of Steady-Flow Analysis on Type I-A Design Using 3 Lanes and 6%
Slope

From Table 4-10, it can be seen that, for a 4-lane pavement with 4% slope, the permeability of the base material has to be at least 300 ft/day if the crack infiltration rate is 0.7 ft^2/day . An infiltration rate of 0.7 ft^2/day applies to a new pavement with few cracks on it. For an older pavement with more cracks on it, the actual infiltration rate would be higher. If the infiltration rate is 1.04 ft^2/day , the required permeability of the base material would be 400 ft/day. If the infiltration rate is 2.4 ft^2/day , the required permeability of the base material would be 800 ft/day.

From Table 4-11, it can be seen that, for a 3-lane pavement with 4% slope, the permeability of the base material has to be at least 200 ft/day if the crack infiltration rate is 0.7 ft^2/day . If the infiltration rate is 1.04 ft^2/day , the required permeability of the base material would be 300 ft/day. If the infiltration rate is 2.4 ft^2/day , the required permeability of the base material material would be 600 ft/day.

From Table 4-12, it can be seen that, for a 2-lane pavement with 4% slope, the required permeability of the base material is 200 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material is also 200 ft/day. If the infiltration rate is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 300 ft/day.

From Table 4-13, it can be seen that, for a 3-lane pavement with 2% slope, the required permeability of the base material is 300 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material is 500 ft/day. If the infiltration rate is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 1100 ft/day.

From Table 4-14, it can be seen that, for a 3-lane pavement with 4% slope, the required permeability of the base material is 300 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the

infiltration rate is 1.04 ft^2/day , the required permeability of the base material is 400 ft/day. If the infiltration rate is 2.4 ft^2/day , the required permeability of the base material would be 800 ft/day.

From Table 4-15, it can be seen that, for a 3-lane pavement with 5%, the required permeability of the base material is 200 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material is 300 ft/day. If the infiltration rate is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 500 ft/day.

From Table 4-16, it can be seen that, for a 3-lane pavement with 6% slope, the required permeability of the base material is 200 ft/day if the crack infiltration rate is $0.7 \text{ ft}^2/\text{day}$. If the infiltration rate is $1.04 \text{ ft}^2/\text{day}$, the required permeability of the base material is 200 ft/day. If the infiltration rate is $2.4 \text{ ft}^2/\text{day}$, the required permeability of the base material would be 500 ft/day.

In comparison, it can be seen that the Type II design with a 6-inch permeable base has a lower required base permeability as compared with the type I design with a 4-inch permeable bases. It can thus be stated that the Type II design has a better drainage condition than the Type I-A design if the same base permeability material, pavement slope and number of lanes are used in both designs.

Table 4-10.Results of Steady-Flow Analysis on Type II Design Using 4 Lanes and4% Slope

Type II - Steady Flow Method Sensitivity Analysis (4 lane; 4% slope)			
$\begin{array}{l} Crack\\ Infiltration\\ Rate (I_c)\\ (ft^3/day/ft) \end{array}$	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1063	200	6.74
0.7	0.1005	300	4.73
		200	9.43
1.04	0.1579	300	6.69
		400	5.21
		200	11.91
1.38	0.2096	300	8.51
1.50	0.2070	400	6.66
		500	5.49
		200	14.22
		300	10.23
1.72	0.2612	400	8.04
		500	6.64
		600	5.67
		200	16.41
		300	11.86
2.06	0.3128	400	9.35
2.00		500	7.75
		600	6.63
		700	5.80
		200	18.49
		300	13.42
2.4		400	10.62
	0.3644	500	8.82
		600	7.56
		700	6.62
		800	5.90

Type II - Steady Flow Method Sensitivity Analysis (3 lane; 4% slope)				
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)	
0.7	0.1067	200	5.26	
1.04	0.1585	200	7.36	
1.04	0.1385	300	5.22	
		200	9.29	
1.38	0.2103	300	6.64	
		400	5.20	
		200	11.09	
1.72	0.2621	300	7.98	
1.72	0.2021	400	6.27	
		500	5.18	
		200	12.80	
	0.3139	300	9.25	
2.06		400	7.30	
		500	6.05	
		600	5.17	
		200	14.42	
2.4		300	10.47	
	0.3657	400	8.28	
		500	6.88	
		600	5.90	

Table 4-11.Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 4%
Slope

Type II - Steady Flow Method Sensitivity Analysis (2 lane; 4% slope)				
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)	
0.7	0.1478	200	2.97	
1.04	0.2196	200	4.12	
1.38	0.2913	200	5.17	
1.72	0.3631	200	6.15	
1.72		300	4.46	
2.06	0.4349	200	7.06	
		300	5.15	
2.4	0.5280	200	7.93	
		300	5.81	

Table 4-12.Results of Steady-Flow Analysis on Type II Design Using 2 Lanes and 4%
Slope

Type II – Steady Flow Method Sensitivity Analysis (3 lanes; 2% slope)			
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	8.12
0.7	0.1067	300	5.92
		200	10.93
1.04	0 1595	300	8.06
1.04	0.1585	400	6.45
		500	5.40
		200	13.43
		300	9.98
1.38	0.2103	400	8.03
		500	6.76
		600	5.85
		200	15.71
		300	11.75
1.72	0.2621	400	9.49
		500	8.01
		600	6.96
		700	6.17
		800	5.55

Table 4-13, continued.

Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
(10 / 44 / 10)	(It/ddy)	200	17.81
		300	13.38
		400	10.86
		500	9.19
2.06	0.3139	600	8.00
		700	7.10
		800	6.40
		900	5.83
	0.3657	200	19.78
		300	14.92
		400	12.14
		500	10.30
2.4		600	8.99
2.4		700	7.99
		800	7.21
		900	6.58
		1000	6.05
		1100	5.61

Type II – Steady Flow Method Sensitivity Analysis (3 lanes; 3% slope)			
Crack Infiltration Rate (I _c)	Rate Infiltration (q _i)	Permeability of Base	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
(ft ³ /day/ft)	(ft/day)	(k)(ft/day)	
0.7	0.1067	200	6.41
0.7	0.1007	300	4.56
		200	8.82
1.04	0.1585	300	6.35
		400	5.00
		200	11.01
1.38	0.2103	300	8.00
1.38	0.2103	400	6.33
		500	5.26
		200	13.04
		300	9.53
1.72	0.2621	400	7.57
		500	6.31
		600	5.43
		200	14.93
		300	10.97
2.07	0.3139	400	8.75
2.06		500	7.32
		600	6.30
		700	5.55
		200	16.72
		300	12.34
2.4		400	9.87
	0.3657	500	8.27
		600	7.14
		700	6.30
		800	5.64

Type II - Steady Flow Method Sensitivity Analysis (3 lane; 5% slope)			
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	4.46
1.04	0.1585	200	6.30
1.04		300	4.42
1.38	0.2103	200	8.02
1.50		300	5.66
	0.2621	200	9.64
1.72		300	6.85
		400	5.34
	0.3139	200	11.19
2.06		300	7.99
2.06		400	6.25
		500	5.14
2.4	0.3657	200	12.67
		300	9.08
		400	7.12
		500	5.88

Table 4-15. Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 5% Slope

Type II - Steady Flow Method Sensitivity Analysis (3 lane; 6% slope)			
Crack Infiltration Rate (I _c) (ft ³ /day/ft)	Rate Infiltration (q _i) (ft/day)	Permeability of Base (k)(ft/day)	Minimum Required Thickness of Permeable Base (H _{min}) (inches)
0.7	0.1067	200	3.86
1.04	0.1585	200	5.49
1.38	0.2103	200	7.04
		300	4.93
1.72	0.2621	200	8.51
		300	5.99
2.06		200	9.91
	0.3139	300	7.01
		400	5.45
2.4	0.3657	200	11.27
		300	8.00
2.4		400	6.23
		500	5.12

Table 4-16. Results of Steady-Flow Analysis on Type II Design Using 3 Lanes and 6% Slope

4.5 Time-to-Drain Drainage Analysis

A sensitivity analysis was performed using the DRIP 2.0 program to evaluate the time-todrain drainage characteristics of Type I-A and Type II designs. This section presents the results from the analyses performed.

The sensitivity analysis was performed by varying (A) the width of draining path (from 2 to 4 lanes), (B) the pavement slope (from 2 to 6%), and (C) permeability of base material (ft/day). The program computed the time to drain for the various combinations of conditions evaluated. The time-to-drain in hours represents a specific time to obtain 50% drainage for a saturated base layer. FHWA rates the quality of drainage based on a scale that ranges from very poor (drains in more than 1 month), poor (from 7 days to 1 month), fair (from 1 to 7 days), good (from 2 to 24 hours) and excellent (less than 2 hours).

Equations 4-8 and 4-9 show the solutions for time to drain as utilized by the DRIP

program.

Case 1:
$$0.5 \le U \le 1.0$$

 $T = 0.5S - 0.48S_1^2 Log(1 + \frac{2.4}{S_1}) + 1.15S_1 Log\left[\frac{S_1 - US_1 + 1.2}{(1 - U)(S_1 + 2.4)}\right]$ (4-8)
Case 2: $0 \le U \le 0.5$
 $T = US - 0.48S_1^2 Log(1 + \frac{4.8U}{S_1})$ (4-9)

(4-9)

where.		
U	=	Percent drainage (expressed as a fraction, e.g., 1 percent = 0.01),
\mathbf{S}_{1}	=	Slope factor = H/DS ,
S	=	Slope of granular layer, ft/ft,
Т	=	Time factor = $(tkH)/(n_eL^2)$, hrs,

The results of time-to-drain analysis on Type I-A design are presented in Tables 4-17 through 4-31, which show the required time to drain for the various combinations of base permeability, pavement slope and number of lanes. The results of time-to-drain analysis on Type II design are presented in Tables 4-32 through 4-46.

It can be seen from these tables that the time to drain decreases (or drainage condition improves) as the base permeability or the pavement slope increases. The time to drain increases as the number of lane increases. In comparison, the Type II design with a 6-inch permeable base has a lower time to drain than the Type I-A design with a 4-inch permeable base if the same base permeability, pavement slope and number of lanes are used in both designs.

Table 4-17. Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 2% Slope

Sensitivity Analysis (4 lanes; 276 slope)		
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	41.13	Fair
300	27.42	Fair
400	20.57	Good
500	16.45	Good
600	13.71	Good
700	11.75	Good
800	10.28	Good
900	9.14	Good
1000	7.48	Good
1500	5.48	Good
2000	4.11	Good
2500	3.29	Good
3000	2.74	Good
4000	2.00	Excellent

Type I-A – Time-to-Drain Method Sensitivity Analysis (4 lanes; 2% slope)

Table 4-18. Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 3% Slope

Sensitivity Analysis (4 lanes; 3% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	28.91	Fair
300	19.28	Good
400	14.46	Good
500	11.57	Good
600	9.64	Good
700	8.26	Good
800	7.23	Good
900	6.43	Good
1000	5.78	Good
1500	3.86	Good
2000	2.89	Good
2500	2.31	Good
2900	1.99	Excellent

Table 4-19.	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 4%
Sl	ope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	22.30	Good
300	14.86	Good
400	11.15	Good
500	8.92	Good
600	7.43	Good
700	6.37	Good
800	5.57	Good
900	4.95	Good
1000	4.46	Good
1500	2.97	Good
2000	2.23	Good
2200	2.03	Good
2400	1.94	Excellent

Type I-A – Time-to-Drain Method
Sensitivity Analysis (4 lanes; 4% slope)

Table 4-20.	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 5%
Sle	оре

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	18.19	Good
300	12.12	Good
400	9.09	Good
500	7.27	Good
600	6.06	Good
700	5.20	Good
800	4.55	Good
900	4.04	Good
1000	3.64	Good
1500	2.42	Good
1900	1.91	Excellent

Type I-A – Time-to-Drain Method Sensitivity Analysis (4 lanes; 5% slope)

Table 4-21.	Results of Time-to-Drain Analysis on Type I-A Design Using 4 Lanes and 6%
Slo	ope

Type I-A – Time-to-Drain Method Sensitivity Analysis (4 lanes; 6% slope)			
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage	
200	15.35	Good	
300	10.23	Good	
400	7.67	Good	
500	6.14	Good	
600	5.12	Good	
700	4.38	Good	
800	3.84	Good	
900	3.41	Good	
1000	3.07	Good	
1500	2.05	Good	
1600	1.92	Excellent	

Table 4-22.Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and
2% Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	30.74	Fair
300	20.49	Good
400	15.37	Good
500	12.29	Good
600	10.25	Good
700	8.78	Good
800	7.68	Good
900	6.83	Good
1000	6.15	Good
1500	4.1	Good
2000	3.07	Good
2500	2.46	Good
3000	2.00	Excellent

Type I-A –	Time-to-Drain Method
------------	-----------------------------

Sensitivity Analysis (3 lanes; 2% slope)

Table 4-23.	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and
3%	6 Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	21.81	Good
300	14.54	Good
400	10.91	Good
500	8.73	Good
600	7.27	Good
700	6.23	Good
800	5.45	Good
900	4.85	Good
1000	4.36	Good
1500	2.91	Good
2000	2.18	Good
2200	1.98	Excellent

Type I-A – **Time-to-Drain Method** Sensitivity Analysis (3 lanes; 3% slope)

Table 4-24.	Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and
4%	5 Slope

Type I-A – Time-to-Drain Method Sensitivity Analysis (3 lanes; 4% slope)			
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage	
200	16.92	Good	
300	11.28	Good	
400	8.46	Good	
500	6.77	Good	
600	5.64	Good	
700	4.83	Good	
800	4.23	Good	
900	3.76	Good	
1000	3.38	Good	
1500	2.26	Good	
1700	1.99	Excellent	

Table 4-25. Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 5% Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	13.85	Good
300	9.23	Good
400	6.92	Good
500	5.54	Good
600	4.62	Good
700	3.96	Good
800	3.46	Good
900	3.08	Good
1000	2.77	Good
1400	1.98	Excellent

Type I-A – Time-to-Drain Method Sensitivity Analysis (3 lanes; 5% slope)

Table 4-26. Results of Time-to-Drain Analysis on Type I-A Design Using 3 Lanes and 6% Slope

Type I-A – Time-to-Drain Method Sensitivity Analysis (3 lanes; 6% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	11.72	Good
300	7.81	Good
400	5.86	Good
500	4.69	Good
600	3.91	Good
700	3.35	Good
800	2.93	Good
900	2.60	Good
1000	2.34	Good
1200	1.95	Excellent

Table 4-27. Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 2% Slope

Sensitivity Analysis (2 lanes; 2% slope)		
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	20.57	Good
300	13.71	Good
400	10.29	Good
500	8.23	Good
600	6.86	Good
700	5.88	Good
800	5.14	Good
900	4.57	Good
1000	4.11	Good
1500	2.74	Good
2000	2.06	Good
2100	1.96	Excellent

Type I-A – Time-to-Drain Method
Sensitivity Analysis (2 lanes: 2% slope)

Table 4-28.	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 3%
Sle	ope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	14.82	Good
300	9.88	Good
400	9.88	Good
500	5.93	Good
600	4.94	Good
700	4.24	Good
800	3.71	Good
900	3.29	Good
1000	2.96	Good
1500		Excellent

Type I-A – Time-to-Drain Method

Sensitivity Analysis (2 lanes; 3% slope)

Table 4-29.	Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 4%
Slo	ope

Type I-A – Time-to-Drain Method Sensitivity Analysis (2 lanes; 4% slope)		
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	11.60	Good
300	7.73	Good
400	5.80	Good
500	4.64	Good
600	3.87	Good
700	3.31	Good
800	2.90	Good
900	2.58	Good
1000	2.32	Good
1200	1.93	Excellent

Table 4-30.	Results of Time-to-Drain Analysis on Type I-A Design Using 2 lanes and 5%
Sl	оре

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	9.55	Good
300	6.37	Good
400	4.78	Good
500	3.82	Good
600	3.18	Good
700	2.73	Good
800	2.39	Good
900	2.12	Good
1000	1.91	Excellent

Type I-A – Time-to-Drain Method
--

Sensitivity Analysis (2 lanes; 5% slope)

130

Table 4-31. Results of Time-to-Drain Analysis on Type I-A Design Using 2 Lanes and 6% Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	8.11	Good
300	5.41	Good
400	4.06	Good
500	3.25	Good
600	2.70	Good
700	2.32	Good
800	2.03	Good
900	1.80	Excellent

Type I-A – Time-to-Drain Method Sensitivity Analysis (2 lanes; 6% slope)

Table 4-32.	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 2%
SI	оре

Type II – Time-to-Drain Method Sensitivity Analysis (4 lanes; 2% slope)			
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage	
200	15.74	Good	
300	10.49	Good	
400	7.87	Good	
500	6.30	Good	
600	5.25	Good	
700	4.50	Good	
800	3.93	Good	
900	3.50	Good	
1000	3.15	Good	
1500	2.10	Good	
1600	1.97	Excellent	

Table 4-33.	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 3%
Sl	ope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	13.28	Good
300	8.85	Good
400	6.64	Good
500	5.31	Good
600	4.43	Good
700	3.79	Good
800	3.32	Good
900	2.95	Good
1000	2.66	Good
1400	1.90	Excellent

Type II – Time-to-Drain Method Sensitivity Analysis (4 Janes: 3% slope)

Table 4-34.	Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 4%
Sl	ope

Type II – Time-to-Drain Method Sensitivity Analysis (4 lanes; 4% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	11.39	Good
300	7.59	Good
400	5.70	Good
500	4.56	Good
600	3.80	Good
700	3.25	Good
800	2.85	Good
900	2.53	Good
1000	2.28	Good
1100	2.07	Good
1200	1.90	Excellent

Table 4-35. Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 5% Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	10.07	Good
300	6.72	Good
400	5.04	Good
500	4.03	Good
600	3.36	Good
700	2.88	Good
800	2.52	Good
900	2.24	Good
1000	2.01	Good
1100	1.83	Excellent

Type II – Time-to-Drain Method

Table 4-36.Results of Time-to-Drain Analysis on Type II Design Using 4 Lanes and 6%
Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	9.04	Good
300	6.02	Good
400	4.52	Good
500	3.61	Good
600	3.01	Good
700	2.58	Good
800	2.26	Good
900	2.01	Good
1000	1.81	Excellent

Type II – Time-to-Drain Method Sensitivity Analysis (4 lanes; 6% slope)

Table 4-37.	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 2%
Sl	ope

Sensitivity Analysis (3 lanes; 2% slope)			
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage	
200	10.40	Good	
300	6.93	Good	
400	5.20	Good	
500	4.16	Good	
600	3.47	Good	
700	2.97	Good	
800	2.60	Good	
900	2.31	Good	
1000	2.08	Good	
1100	1.89	Excellent	

Type II – Time-to-Drain Method

Table 4-38.	Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 3%
Sl	ope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	8.97	Good
300	5.98	Good
400	4.48	Good
500	3.59	Good
600	2.99	Good
700	2.56	Good
800	2.24	Good
900	1.99	Excellent

Type II – Time-to-Drain Method Sensitivity Analysis (3 lanes: 3% slope)

Table 4-39.Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 4%
Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	7.89	Good
300	5.26	Good
400	3.95	Good
500	3.16	Good
600	2.63	Good
700	2.25	Good
800	1.97	Excellent

Type II – Time-to-Drain Method Sensitivity Analysis (3 lanes; 4% slope)

Table 4-40. Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 5% Slope

Type II – Time-to-Drain Method Sensitivity Analysis (3 lanes; 5% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	7.06	Good
300	4.71	Good
400	3.53	Good
500	2.83	Good
600	2.35	Good
700	2.02	Good
800	1.77	Excellent

Table 4-41.Results of Time-to-Drain Analysis on Type II Design Using 3 Lanes and 6%
Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	6.04	Good
300	4.27	Good
400	3.20	Good
500	2.56	Good
600	2.13	Good
700	1.83	Excellent

Type II – Time-to-Drain Method Sensitivity Analysis (3 lanes; 6% slope)

Table 4-42. Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 2% Slope

Sensitivity Analysis (2 lanes; 2% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	5.85	Good
300	3.90	Good
400	2.93	Good
500	2.34	Good
600	1.95	Excellent

Table 4-43. Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 3% Slope

Sensitivity Analysis (2 lanes; 3% slope)								
Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage						
200	2.34	Good						
300	3.46	Good						
400	2.59	Good						
500	2.08	Good						
600	1.73	Excellent						

Type II – Time-to-Drain Method

Table 4-44.Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 4%
Slope

 $Type \ II-Time-to-Drain \ Method$

Sensitivity Analysis (2 lanes; 4% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	4.66	Good
300	3.11	Good
400	2.33	Good
500	1.87	Excellent

Table 4-45. Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 5% Slope

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	4.24	Good
300	2.83	Good
400	2.12	Good
500	1.70	Excellent

Type II – Time-to-Drain Method

Table 4-46. Results of Time-to-Drain Analysis on Type II Design Using 2 Lanes and 6% Slope

Type II – Time-to-Drain Method Sensitivity Analysis (2 lanes; 6% slope)

Permeability of Base (k)(ft/d)	Time to Drain (T)(hr)	Quality of Drainage
200	3.89	Good
300	2.60	Good
400	1.95	Excellent

4.6 Drainage Requirements for Type I-A and Type II Designs

If a crack infiltration rate of 0.7 ft³/day/ft is used, the required base permeability for Type I-A and Type II designs for the various combinations of pavement cross slope and number of lanes are summarized in Tables 4-47 and 4-48, respectively. The corresponding times to drain for the various conditions are also shown on these tables. In comparison, Type II design has better drainage performance than Type I-A design for the same combination of pavement slope and number of lanes used.

Table 4-47.Required Base Permeability and Time to Drain for Type I-A Design (with
Crack Infiltration Rate of 0.7 ft³/day/ft)

Cross- Slope	Permeability Required (ft/day) [Time-to-Drain (hrs)]						
	2-lane	3-lane	4-lane				
2%	400	600	700				
	[20.6]	[10.25]	[11.75]				
3%	300	400	500				
	[9.88]	[10.91]	[11.57]				
4%	200	300	400				
	[11.6]	[11.3]	[11.2]				
5%	200	300	300				
	[9.6]	[9.2]	[12.1]				
6%	200	200	300				
	[8.1]	[11.7]	[10.2]				

Cross- Slope	Permeability Required (ft/day) [Time-to-Drain (hrs)]									
	2-lane	2-lane 3-lane 4-lane								
2%	200	300	500							
	[5.85]	[6.93]	[6.30]							
3%	200	300	400							
	[2.34]	[5.98]	[6.64]							
4%	200	200	300							
	[4.7]	[7.9]	[7.6]							
5%	100	200	200							
	[4.9]	[7.1]	[10.1]							
6%	100	200	200							
	[3.1]	[6.0]	[9.0]							

Table 4-48.Required Base Permeability and Time to Drain for Type II Design (with
Crack Infiltration Rate of 0.7 ft³/day/ft)

4.7 Drainage Issues for Type I-B Design

Type I-B concrete pavement has a 4-inch asphalt concrete base layer under the concrete slab. Since the asphalt concrete layer is a non-permeable layer, water does not drain well through it. Thus the steady-flow analysis and the time-to-drain analysis could not be appropriately performed on this type of pavement. In order for this type of pavement to not have serious issues with drainage, the following conditions must exist throughout the life of the pavement:

- (1) The concrete layer remains well bonded to the asphalt concrete layer, so that little water would go between these two layers.
- (2) The pavement has good surface drainage characteristics, so that most of the water would run off the surface instead of seeping through the concrete into the asphalt concrete layer.
- (3) The asphalt concrete is resistant to stripping action, even if some water gets between the concrete and the asphalt layer.

In the new long-life concrete pavement design adopted by Washington DOT, a 4-inch dense-graded HMA (hot mix asphalt) is used as the base layer under a 13-inch concrete layer (Muench et al. 2012). Prior to the adoption of this new design, Washington DOT had used an asphalt-treated base which had shown stripping problems. However, no stripping or pumping problem has been reported with the use the HMA base layer.

Long-term monitoring of Type I-B pavement is needed to determine whether or not there will be drainage related issue with the use of asphalt concrete base in concrete pavement in Florida.

CHAPTER 5 EVALUATION OF FACTORS AFFECTING THE PERFORMANCE OF JOINTED PLAIN CONCRETE PAVEMENTS

5.1 Selection of LTPP Test Sections

5.1.1 LTPP Data Set Overview

To meet the needs for information on long-term performance of a wide range of pavement designs, the Long-Term Pavement Performance (LTPP) program was planned and launched in 1987 as a part of the Strategic Highway Research Program (SHRP). There are more than 2,500 pavement sections which have been monitored in the U.S. and Canada and are included in the LTPP database.

5.1.2 Classification of LTPP Test Sections

The 2500+ test sections in the LTPP program are classified as either General Pavement Studies (GPS) or Specific Pavement Studies (SPS). The data for the GPS test sections contain more general variables affecting the performance of pavements, while the data for the SPS test sections contains more specific variables. Thus, the data for the GPS test sections are more useful for the evaluation of the effects of different pavement variables on the pavement performance.

There are 800+ GPS test sections, which are classified into 18 different experimental sections, as shown in Table 5-1. The data from Experimental Section GPS-3 for Jointed Plain Concrete Pavements (JPCP) were used for the analysis as presented in this chapter.

Experimental Section Designation	Type of Pavement
GPS-1	Asphalt Concrete (AC) Pavement on Granular Base
GPS-2	AC Pavement on Bound Base
GPS-3	Jointed Plain Concrete Pavement (JPCP)
GPS-4	Jointed Reinforced Concrete Pavement (JRCP)
GPS-5	Continuously Reinforced Concrete Pavement (CRCP)
GPS-6 (A,B,C,D,S)	Existing AC Overlay of AC Pavement
GPS-7 (A,B,C,D,F,R,S)	Existing AC Overlay on PCC Pavement
GPS-9	Unbonded PCC Overlay on PCC Pavement

 Table 5-1.
 Classifications of GPS Test Sections

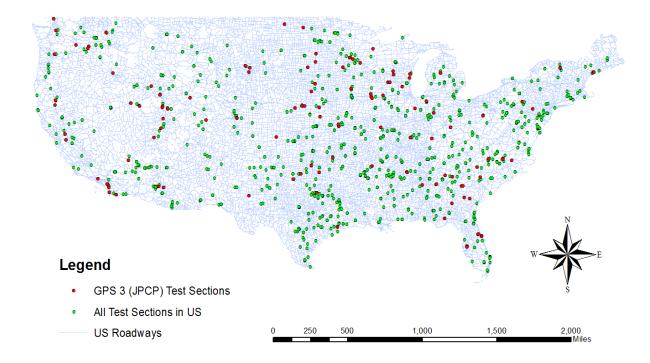


Figure 5-1. LTPP test sections in the U.S..

Figure 5-1 shows the locations of all the LTPP test sections in the United States. The locations of the GPS-3 (JPCP pavements) test sections are shown in red in this figure.

5.1.3 Selection of JPCP Test Sections for Analysis

In the LTPP database, the ride quality of the GPS test sections is characterized by the International Roughness Index (IRI), in units of meter per kilometer (m/km). An examination was made on the IRI data of the JPCP (GPS-3) Test Sections to see if the data was reasonable. The IRI data for each test section were plotted versus time to observe how IRI vary as a function of time, as shown in Figure 5-2 and 5-3. The plot in Figure 5-2 represents a reasonable trend as IRI generally increases with time as a pavement deteriorates. It was found that some of the IRI data show a decrease in IRI with time, as shown in Figure 5-3, which does not appear to be reasonable. The GPS-3 test sections with unreasonable IRI trend and missing traffic data were excluded from the analysis.

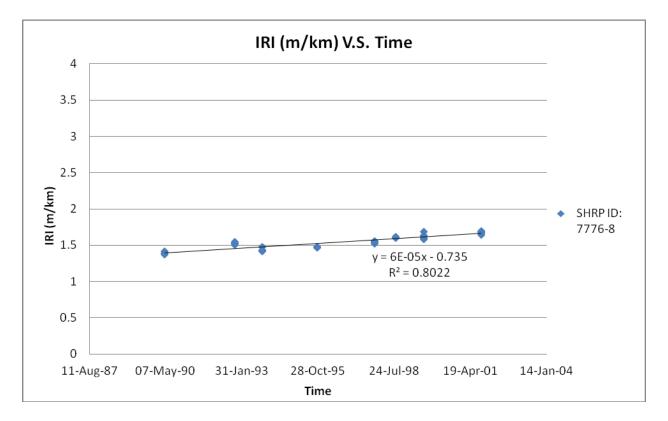


Figure 5-2. Historical IRI data for test sections with reasonable trend.

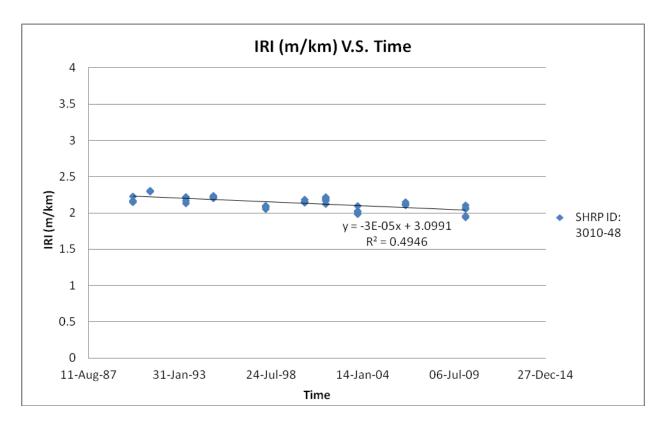


Figure 5-3. Historical IRI data for test sections with unreasonable trend.

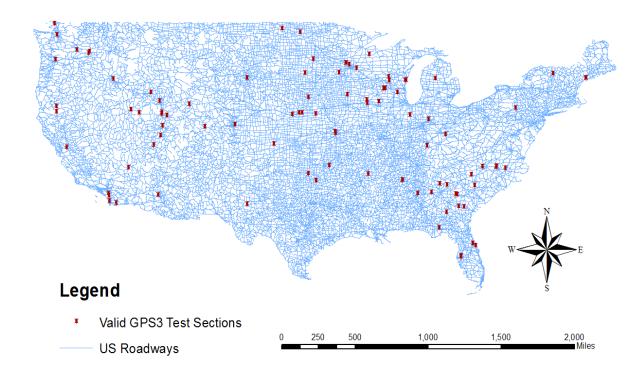


Figure 5-4. Locations of valid GPS-3 test sections used in analysis.

Out of 126 GPS-3 test sections, 97 test sections were found to have reasonable IRI trends versus time. Table 5-2 presents the information on these 97 test sections which are evaluated in this study. The locations of these 97 GPS-3 test sections are shown in Figure 5-4.

 Table 5-2.
 Information on 97 Valid GPS Test Sections

SHRP ID	State Code	Average Annual Traffic ¹ $(\times 10^3)$ ESAL)	IRI Deterioration Rate ²	Slab Thickness (in)	Slab Length (ft)	Base Type ³	Subgrade Type ⁴	Drainage Type ⁵	Average Temperature (°C)	Days under 0°C	Annual Precipitation (mm)	Wet Days
3052	46	14.6	576.89	9.0	20.0	303	109	1	7.5	164.5	572.0	109.4
3053	46	21.5	646.12	8.0	15.0	303	145	1	6.8	183.8	531.7	118.4
3012	55	24.0	847.10	7.0	15.0	303	216	1	7.2	157.2	771.7	132.1
3010	46	38.8	1226.70	9.5	15.0	302	216	1	6.6	167.0	589.6	98.7
3019	55	48.8	312.64	8.0	15.1	306	205	1	5.4	182.8	847.6	150.3
3013	39	63.3	903.12	8.0	17.0	339	108	1	11.9	110.6	1145.7	161.0
3030	18	65.2	571.01	8.0	15.5	319	114	1	10.9	115.1	987.1	148.9
3069	26	68.5	65.54	9.0	14.5	N/A	203	1	7.3	164.6	818.8	165.7
4138	12	71.0	687.85	8.0	20.0	339	214	1	21.6	4.8	1334.8	166.1
4059	12	71.4	89.95	6.0	14.0	303	202	2	21.9	3.6	1357.6	182.5
3020	13	72.9	49.10	9.0	20.0	339	216	1	18.7	33.7	1174.2	119.7
3028	1	91.2	754.81	10.0	20.0	303	216	4	16.3	63.6	1393.2	121.6
3010	35	95.8	32.37	8.0	13.5	308	202	1	16.6	77.4	396.4	68.2
3006	38	96.0	84.41	8.0	14.0	302	145	1	4.5	189.9	480.0	86.1
3019	13	98.1	201.01	9.0	20.0	308	114	1	15.1	63.0	1432.6	151.5
3010	55	115.7	1578.76	10.0	14.9	302	146	1	8.3	132.6	834.7	130.2
4160	40	124.6	292.88	9.0	15.0	320	108	1	16.4	63.4	1024.8	83.5
3060	20	138.4	432.56	10.0	15.0	334	102	1	13.0	99.5	987.5	136.0
3005	38	141.1	358.85	8.0	13.8	308	114	1	3.8	189.9	507.2	106.6
1682	50	141.5	567.49	8.0	N/A	302	215	7	7.2	153.8	889.6	186.5
3816	37	150.3	33.77	9.0	30.0	331	141	1	15.2	71.1	12.0	157.1
3006	19	156.5	702.01	8.5	20.0	331	114	1	9.8	131.0	141.1	198.3
3007	13	160.1	41.05	9.0	20.0	308	145	1	14.8	58.6	1451.3	109.7
3003	27	160.6	320.49	7.5	15.0	302	114	1	7.3	157.3	715.6	118.4
3015	20	173.5	122.02	9.0	15.0	319	102	1	12.1	142.5	492.5	79.7
3813	53	178.2	335.91	7.8	15.0	308	214	1	12.0	32.7	1234.8	182.7
3018	28	184.5	272.61	9.0	20.0	339	214	1	14.9	87.4	1544.2	130.5
3013	27	190.8	172.14	8.0	15.0	302	204	1	7.2	155.2	758.9	134.7
3008	37	201.8	99.46	8.0	21.3	332	215	1	15.4	69.2	1183.9	150.2
7086	49	229.0	326.75	10.0	12.5	334	267	1	11.7	105.6	446.8	109.2
3021	6	233.7	19.99	8.4	15.5	331	215	1	16.0	56.3	383.4	49.7
3033	31	239.6	265.12	9.0	15.5	319	214	1	9.5	150.6	657.6	96.0
3055	19	254.2	334.60	10.0	20.0	302	216	1	8.5	152.5	856.9	128.0
7085	49	258.2	18.80	10.0	12.5	334	265	1	7.5	192.2	488.6	110.0
3028	31	261.6	64.18	8.5	15.5	331	102	1	11.1	131.5	739.6	111.5
3014	55	269.3	186.94	10.0	15.5	304	267	1	8.9	140.7	885.9	151.1
6353	55	271.5	102.17	9.0	15.5	331	282	2	7.7	157.8	904.4	140.2
3009	55	272.2	1206.16	8.0	15.3	304	108	1	8.0	139.9	867.7	131.4
3013	20	279.9	86.07	10.0	15.0	332	102	1	13.0	97.7	1002.9	120.0
6351	55	293.5	78.35	9.0	15.5	303	265	2	7.7	157.9	907.2	132.6
3019	28	322.5	257.25	9.0	20.0	339	265	1	14.9	87.4	1544.1	130.3
3011	53	323.8	177.00	9.0	11.5	307	215	2	10.0	52.8	1151.1	162.9
6352	55	337.0	22.74	9.0	15.5	303	282	3	7.9	156.1	897.3	155.3
3016	55	339.8	15.15	9.0	15.5	302	204	1	7.5	157.2	830.2	139.6
3028	19	339.8	80.57	9.5	20.0	334	114	2	10.5	126.9	913.5	123.0
7409	53	353.3	130.18	9.0	11.5	304	255	1	11.1	121.9	212.0	75.4
3812	53	365.5	31.46	9.0	15.0	308	265	1	11.2	37.6	1012.6	178.3
7083	49	374.9	82.76	10.0	12.5	334	267	3	9.5	171.8	217.8	73.2

li	able 5	- <i>2</i> , conu	nueu.									
3807	37	380.0	30.74	9.0	21.3	339	214	1	14.8	78.7	1136.0	142.1
3002	18	393.0	98.45	9.0	15.5	303	114	1	10.6	122.1	968.0	152.2
3009	19	397.8	34.32	10.0	20.0	331	216	2	9.3	135.4	884.7	126.2
3015	55	405.0	85.98	9.0	15.3	302	202	1	7.9	156.6	874.6	147.3
3017	16	421.5	58.88	10.0	14.5	321	143	7	9.2	150.8	315.7	87.9
3019	53	421.6	66.66	10.0	11.5	304	141	1	12.0	76.3	243.8	95.7
3011	5	434.0	24.39	10.0	15.0	331	133	1	16.1	62.2	1247.9	128.7
3014	53	449.3	29.24	10.0	11.5	308	214	1	11.9	80.2	243.7	94.9
4057	12	483.6	22.64	13.0	15.5	306	202	6	22.7	1.8	1256.2	147.6
3013	23	490.3	22.70	10.0	20.0	308	204	1	7.6	144.4	1175.5	145.9
3014	23	492.8	41.48	10.0	20.0	308	204	1	7.6	144.3	1176.1	145.0
3015	49	536.2	52.41	11.0	12.5	321	215	1	11.2	110.7	511.4	109.5
1623	42	544.6	12.73	9.0	20.0	334	217	2	10.3	118.2	1079.2	143.6
3032	8	573.3	7.07	8.0	15.5	334	255	1	9.1	173.5	348.9	95.2
4157	40	573.8	20.35	9.0	15.0	319	214	1	15.9	70.1	1110.0	122.3
3811	12	582.3	60.55	9.0	20.0	339	216	2	19.5	24.3	1500.2	156.5
3804	12	599.7	73.64	12.0	19.5	339	202	1	22.7	2.3	1276.4	149.9
3005	27	625.9	100.89	7.5	20.0	308	113	1	6.6	164.1	770.1	126.0
3007	27	625.9	29.16	7.5	19.7	321	113	2	6.6	164.1	770.1	126.0
3012	27	634.3	2.01	9.9	15.1	308	133	2	6.6	164.1	770.1	126.0
3011	13	701.2	19.26	10.0	20.0	319	214	4	18.5	34.6	1180.8	139.8
3013	32	702.6	74.81	8.0	15.5	331	255	1	10.8	127.0	133.0	62.1
7082	49	723.2	41.39	10.0	12.5	334	267	1	9.2	146.7	429.8	105.5
3015	13	760.1	44.18	10.0	20.0	339	202	2	19.1	27.6	1228.1	116.9
3023	16	800.0	5.79	9.0	13.5	304	214	1	10.6	131.8	281.6	98.8
3010	32	830.4	43.82	9.0	15.5	331	264	1	7.1	201.5	271.5	76.3
3011	49	836.3	82.49	10.5	15.0	331	267	1	10.3	154.1	347.3	89.6
3027	56	878.8	169.97	10.0	13.8	304	215	1	6.2	197.7	220.1	93.5
3016	21	919.6	4.41	11.0	15.0	303	111	1	14.1	88.0	1237.2	147.2
3010	6	977.3	3.47	9.0	15.5	331	217	1	17.7	0.4	287.1	46.6
7776	8	1017.1	22.97	10.5	13.0	307	113	1	10.1	159.9	419.0	101.8
3018	31	1038.3	91.05	12.0	15.5	339	202	1	10.1	150.3	620.6	90.6
3011	37	1040.5	6.67	10.0	30.0	321	216	7	15.7	65.2	1181.0	141.1
7614	4	1053.3	32.92	10.0	15.0	331	215	1	22.0	12.6	209.4	40.0
7456	6	1096.4	35.56	11.4	15.5	331	267	1	16.1	16.9	308.8	61.1
3044	37	1103.3	23.16	9.0	30.0	307	143	1	15.0	75.5	1173.2	157.7
3018	13	1154.4	23.71	10.0	19.5	331	216	4	16.7	55.2	1223.9	127.9
3017	13	1183.0	3.67	10.0	19.5	331	214	4	16.6	52.5	1222.6	138.7
3012	45	1195.6	3.97	10.0	21.5	334	145	1	16.7	54.7	1143.4	130.3
3023	31	1229.0	7.42	12.0	15.5	302	202	1	10.5	142.3	679.6	116.0
7493	6	1232.1	1.72	9.6	13.5	331	215	1	17.3	0.7	355.0	48.3
3018	40	1243.9	65.73	9.0	15.0	320	102	1	15.8	72.6	878.2	112.2
3010	49	1337.7	10.72	9.5	15.0	331	267	3	8.9	184.4	306.2	83.3
7084	32	1344.5	3.99	10.5	13.5	322	280	1	20.0	12.8	128.9	36.4
3030	6	1370.1	19.18	7.8	15.5	331	267	2	14.2	39.3	1327.4	114.1
3024	31	1511.3	14.01	14.0	15.5	307	102	1	10.5	141.4	714.8	109.8
3016	13	1590.9	9.41	11.0	20.0	319	214	2	16.3	59.3	1348.1	137.9
3019	6	1934.0	21.70	8.4	15.5	331	216	2	18.1	12.3	332.5	48.9
3005	6	2023.4	107.08	8.4	15.5	331	265	2	9.8	132.0	986.8	109.4
			1									

Note 1: Annual ESALs in thousands in the LTPP lane Note 2: IRI Deterioration Rate = $\Delta IRI/year/annual ESALs \times 10^6$ Note 3: Index for drainage type

Code	Detail		
1	No subsurface drainage		
2	Longitudinal drains		
3	Transverse drains		
4	Drainage blanket		
6	Drainage blanket with longitudinal drains		
7	Other		

Note 4: Index for base type

Code	Detail		
302	Gravel (Uncrushed)		
303	Crushed Stone		
304	Crushed Gravel		
306	Sand		
307, 308	Soil-Aggregate Mixture		
319	Fine-Grained Soils		
320	Sand Asphalt		
321	Asphalt Treated Mixture		
322	Dense Graded, Hot Laid, Central Plant Mix		
331	Cement Aggregate Mixture		
332	Econocrete		
334	Lean Concrete		
339	Soil Cement		

Note 5: Index for subgrade type

Code	Detail			
102	Fine-Grained Soils: Lean Inorganic Clay			
108	Fine-Grained Soils: Lean Clay with Sand			
109	Fine-Grained Soils: Fat Clay with Sand			
111	Fine-Grained Soils: Gravelly Lean Clay			
113	Fine-Grained Soils: Sandy Clay			
114	Fine-Grained Soils: Sandy Lean Clay			
133	Fine-Grained Soils: Silty Clay with Sand			
141	Fine-Grained Soils: Silt			
143	Fine-Grained Soils: Silt with Sand			
145	Fine-Grained Soils: Sandy Silt			
146	Fine-Grained Soils: Gravelly Silt with Sand			
202	Coarse-Grained Soils: Poorly Graded Sand			
203	Coarse-Grained Soils: Poorly Graded Sand with Gravel			
204	Coarse-Grained Soils: Poorly Graded Sand with Silt			
205	Coarse-Grained Soils: Poorly Graded Sand with Silt and Gravel			
214	Coarse-Grained Soil: Silty Sand			
215	Coarse-Grained Soil: Silty Sand with Gravel			
216	Coarse-Grained Soil: Clayey Sand			
217	Coarse-Grained Soil: Clayey Sand with Gravel			
255	Coarse-Grained Soil: Poorly Graded Gravel with Silt and Sand			
264	Coarse-Grained Soil: Silty Gravel			
265	Coarse-Grained Soil: Silty Gravel with Sand			
267	Coarse-Grained Soil: Clayey Gravel with Sand			
280	Rock and Stone			
282	Rock			

5.2 Evaluation of Effects of Various Design and Environment Factors on Performance of GPS-3 (JPCP) Test Sections

5.2.1 Pavement Performance Indicator

To evaluate the effect of various factors on performance of valid GPS-3 test sections, a IRI deterioration rate was used as a performance indicator for the test sections. IRI was used as a performance indicator since it is directly related to the serviceability of pavements. The IRI deterioration rate is computed as follows:

$$IRI Deterioration Rate = Rate of Change in IRI / Traffic \times 10^{6}$$
(5-1)

Where:

Rate of Chan	ge in IRI $=$	Δ IRI (m/km) / Age (years)
Traffic	=	Average annual ESALs

Due to the variation of the IRI data, it was difficult to determine the change in IRI consistently. To resolve this problem, a linear regression analysis was performed on the plot of IRI versus time data, and the slope of the regression line was used to determine the change in IRI over the analysis period.

5.2.2 The Effect of Slab Design and Environment Factors on the Pavement Performance

In order to determine the correlation between each parameter and the IRI deterioration rate, descriptive statistical analysis for factors related with pavement design and environment was conducted.

5.2.2.1 The Effect of Concrete Slab Thickness

Figure 5-5 shows a plot of IRI deterioration rate versus concrete slab thickness for pavements with and without drainage systems. It can be seen that the deterioration rate generally decreases with increasing concrete slab thickness. The pavements with drainage systems generally perform better than those without.

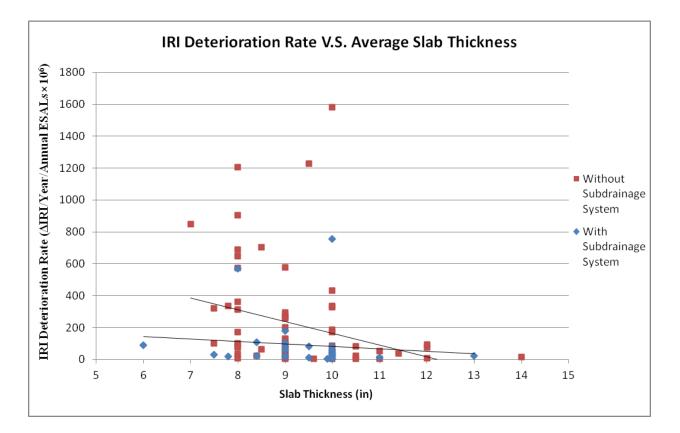


Figure 5-5. IRI deterioration rate versus concrete slab thickness.

5.2.2.2 The Effect of Concrete Slab Length

Figure 5-6 shows a plot of IRI deterioration rate versus concrete slab length for pavements with and without drainage systems. It can be seen that the deterioration rate generally increases with increasing concrete slab length for the test sections with drainage system. On the

other hand, in case of the test sections without drainage systems, the deterioration rate generally decreases with increasing concrete slab length. With the inconsistent results, it can be concluded that the slab length does not have a strong correlation with the pavement performance expressed by a change in IRI.

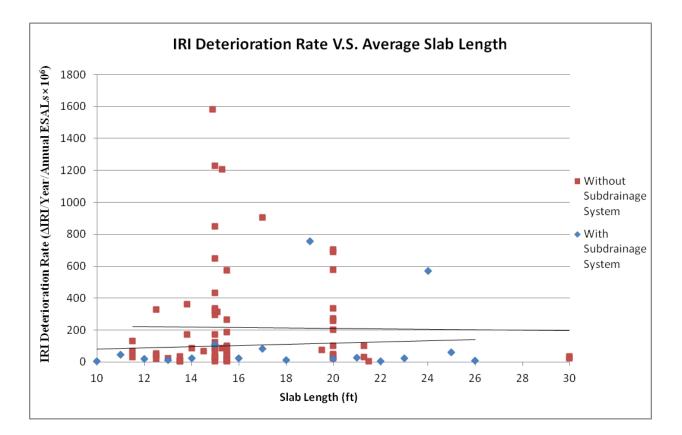


Figure 5-6. IRI deterioration rate versus concrete slab length.

5.2.2.3 The Effect of Average Temperature

Figure 5-7 shows a plot of IRI deterioration rate versus annual average temperature for pavement with and without drainage systems. It can be seen that the deterioration rate generally decreases with increasing temperature. Similarly, the pavements with drainage systems generally perform better than those without.

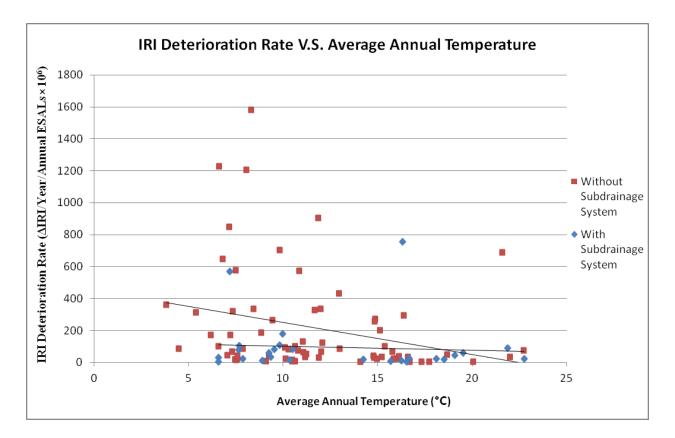


Figure 5-7. IRI deterioration rate versus average temperature.

5.2.2.4 The Effect of Number of Cold Days

Figure 5-8 shows a plot of IRI deterioration rate versus number of cold days per year under 0°C for pavement with and without drainage systems. It can be seen that the deterioration rate generally increases with increasing number of cold days. Similarly, the pavements with drainage systems generally perform better than those without.

5.2.2.5 The Effect of Precipitation

Figure 5-9 shows a plot of IRI deterioration rate versus annual precipitation for pavement with and without drainage systems. It can be seen that the deterioration rate generally increases with increasing precipitation. Similarly, the pavements with drainage systems generally perform better than those without.

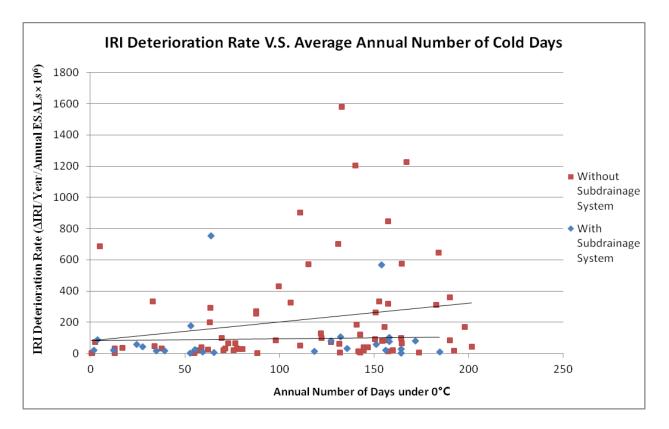


Figure 5-8. IRI deterioration rate versus number of cold days.

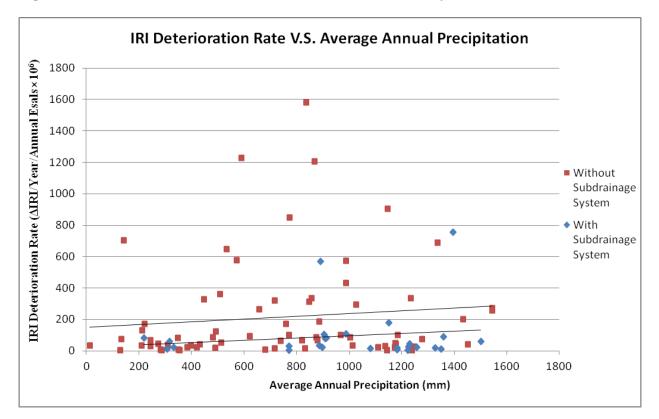


Figure 5-9. IRI deterioration rate versus precipitation.

5.2.2.6 The Effect of Number of Wet Days

Figure 5-10 shows a plot of IRI deterioration rate versus number of wet days (days with 5 mm or more of precipitation) per year for pavement with and without drainage systems. It can be seen that the deterioration rate generally increases with increasing number of wet days. Similarly, the pavements with drainage systems generally perform better than those without.

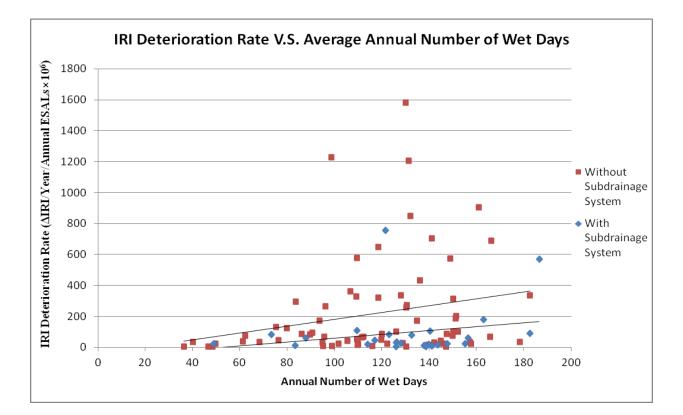


Figure 5-10. IRI deterioration rate versus number of wet days. 5.2.2.7 The Effect of Different Drainage Systems

Figure 5-11 shows the average IRI deterioration rate of pavements with different drainage systems. It can be seen that the deterioration rate of pavements with no drainage system is substantially higher than those with drainage systems. Drainage blankets appear to give slightly better performance than longitudinal drains and all other drainage systems. Other drainage types include granular borrow, 4 inches of sand with longitudinal drain and longitudinal ditch.

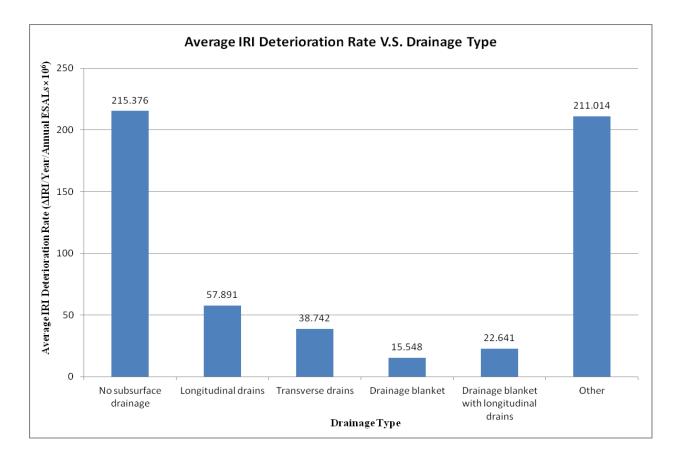


Figure 5-11. Average IRI deterioration rate of pavements with different drainage types.

5.2.2.8 The Effect of Base Type

Table 5-3 shows the average IRI deterioration rates of concrete pavements with different base types. As shown in Table 5-3, pavements with dense graded, hot laid, central plant mix base appear to have the best performance while pavements with gravel base appear to have the worst performance.

5.2.2.9 The Effect of Subgrade Type

Table 5-4 shows the average IRI deterioration rates of concrete pavements with different subgrade types. The pavements with gravelly lean clay subgrade appear to have the best performance while the pavements with gravelly Silt with Sand subgrade appear to have the worst performance.

Base Type	Average IRI Deterioration Rate ¹				
Gravel (Uncrushed)	439.314				
Crushed Stone	346.5347				
Crushed Gravel	294.2849				
Sand	167.6409				
Soil-Aggregate Mixture	84.0522				
Fine-Grained Soils	177.0287				
Sand Asphalt	179.3026				
Asphalt Treated Mixture	36.78105				
Dense Graded, Hot Laid, Central Plant Mix	3.98945				
Cement Aggregate Mixture	72.08385				
Econocrete	92.76475				
Lean Concrete	111.8433				
Soil Cement	230.5121				

 Table 5-3.
 Average IRI Deterioration Rate with Different Base Types

Note 1: IRI Deterioration Rate = Δ IRI/year/annual ESALs × 10⁶

Table 5-4. Average IRI Deterioration Rate with Different Subgrade Ty	eterioration Rate with Different Subgrade Types
--	---

Subgrade Type	Average IRI deterioration Rate ¹			
Fine-Grained Soils: Lean Inorganic Clay	130.7613			
Fine-Grained Soils: Lean Clay with Sand	800.7224			
Fine-Grained Soils: Fat Clay with Sand	576.8935			
Fine-Grained Soils: Gravelly Lean Clay	4.40555			
Fine-Grained Soils: Sandy Clay	51.0051			
Fine-Grained Soils: Sandy Lean Clay	333.2012			
Fine-Grained Soils: Silty Clay with Sand	13.20205			
Fine-Grained Soils: Silt	50.2167			
Fine-Grained Soils: Silt with Sand	41.02235			
Fine-Grained Soils: Sandy Silt	193.8844			
Fine-Grained Soils: Gravelly Silt with Sand	1578.756			
Coarse-Grained Soils: Poorly Graded Sand	55.9034			
Coarse-Grained Soils: Poorly Graded Sand with Gravel	65.5394			
Coarse-Grained Soils: Poorly Graded Sand with Silt	62.8676			
Coarse-Grained Soils: Poorly Graded Sand with Silt and Gravel	312.6444			
Coarse-Grained Soil: Silty Sand	152.7233			
Coarse-Grained Soil: Silty Sand with Gravel	140.1199			
Coarse-Grained Soil: Clayey Sand	335.9278			
Coarse-Grained Soil: Clayey Sand with Gravel	277.7431			
Coarse-Grained Soil: Poorly Graded Gravel with Silt and Sand	198.2133			
Coarse-Grained Soil: Silty Gravel	303.107			
Coarse-Grained Soil: Silty Gravel with Sand	238.2063			
Coarse-Grained Soil: Clayey Gravel with Sand	284.5577			
Rock and Stone	490.7425			
Rock	111.0513			

Note 1: IRI Deterioration Rate = Δ IRI/year/annual ESALs $\times 10^{6}$

5.3 Evaluation of Performance of JPCP Test Sections in Wet and No-Freeze Climate Zone 5.3.1 Overview

In the previous section, the Long-Term Pavement Performance (LTPP) database was studied and used to evaluate the effects of environmental conditions and pavement designs on performance of Jointed Plain Concrete Pavements (JPCP) in the U.S. In this section, additional analysis was performed on LTPP JPCP sections in the southeastern region of the U.S., which is classified as Wet and No-Freeze Climate Zone and which is more applicable to Florida climate condition. Critical stress analysis was performed on the selected LTPP JPCP sections to determine the maximum stress in the concrete slab under a specific load and temperature condition. The results of critical stress analysis were compared to the observed performance of the selected pavements to determine if they can be used as predictors for the performance of these pavements.

5.3.2 Valid Test Sections in the Wet and No-Freeze Climate Zone

There are four LTPP climate zones in U.S. as shown in Figure 5-12, (1) Dry and No-Freeze, (2) Wet and Freeze, (3) Wet and No-Freeze, and (4) Dry and Freeze. Florida lies in the Wet and No-Freeze Zone. Thus, for the critical stress analysis, only test sections in the Wet and No-Freeze Zone were selected to reduce the effect caused by different environment conditions.

Among the 97 valid GPS-3 sections in the U.S., there are 26 test sections located in this climate zone. Figure 5-13 shows all sections in the Wet and No-Freeze Climate Zone and excluded sections. Out of all 26 valid GPS-3 test sections, 2 test sections (SHRP ID: 3019-28 and 4059-12) were excluded due to their missing material property data in LTPP data set. Table 5-5 shows the 24 valid test sections used in the analysis, along with their material properties

Figure 5-12. LTPP climate zones.

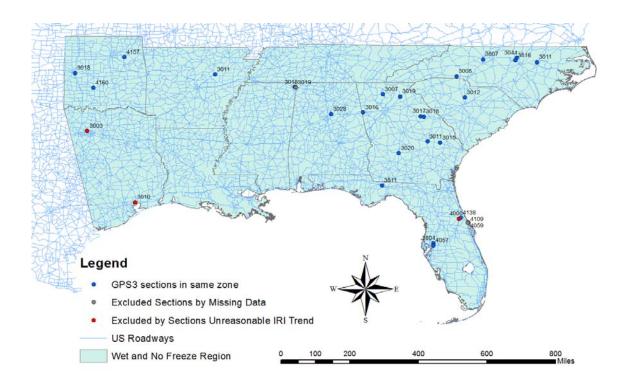


Figure 5-13. Locations of LTPP JPCP test sections in Wet and No-Freeze Climate Zone.

SHRP ID	States Code	Comment	Calculated Maximum Stress (psi)	Stress- to- Strength Ratio	Coefficient of Thermal Expansion (1/°F)	Average Poisson's Ratio	Average Elastic Modulus (psi)	Slab Length (in)	Slab Thickness (ft)	Average Annual Traffic ¹ (× 10 ³ ESAL)	Compressive Strength (psi)	Tensile Strength (psi)	Calculated MR (psi)	IRI Deterioration Rate ²
3017	GA13	Valid	377.66	0.68	4.495E-06	0.145	3.45E+06	19.5	10	1183.00	5695	494.5	553.5448	3.67
3012	SC45	Valid	488.06	0.75	4.989E-06	0.160	4.73E+06	21.5	10	1195.57	8645	584.5	654.291	3.97
3011	NC37	Valid	399.27	0.69	4.667E-06	0.140	3.78E+06	30.0	10	1040.50	6725	515.5	577.0522	6.67
3016	GA13	Valid	422.82	0.57	5.127E-06	0.165	4.05E+06	20.0	11	1590.93	8150	664.5	743.8433	9.41
3011	GA13	Valid	379.76	0.81	4.642E-06	0.110	3.45E+06	20.0	10	701.21	5230	421.0	471.2687	19.26
4157	OK40	Valid	478.67	0.58	4.048E-06	0.225	4.73E+06	15.0	9	573.82	8125	732.5	819.9627	20.35
4057	FL12	Valid	318.29	0.59	4.382E-06	0.170	3.78E+06	15.5	13	483.63	7040	485.5	543.4701	22.64
3044	NC37	Valid	450.67	0.65	5.278E-06	0.135	3.73E+06	30.0	9	1103.33	5790	620.0	694.0299	23.16
3018	GA13	Valid	275.62	0.53	4.359E-06	0.130	2.00E+06	19.5	10	1154.40	5735	467.0	522.7612	23.71
3011	AR5	Valid	478.20	0.72	5.993E-06	0.150	4.03E+06	15.0	10	434.00	7985	591.5	662.1269	24.39
3807	NC37	Valid	440.67	0.66	4.376E-06	0.190	3.95E+06	21.3	9	380.00	7345	594.0	664.9254	30.74
3816	NC37	Valid	455.40	0.78	4.889E-06	0.135	4.03E+06	30.0	9	150.25	6795	519.0	580.9701	33.77
3007	GA13	Valid	516.65	0.76	3.952E-06	0.250	5.43E+06	20.0	9	160.05	7590	609.5	682.2761	41.05
3015	GA13	Valid	444.71	0.73	5.037E-06	0.115	4.13E+06	20.0	10	760.05	6705	545.0	610.0746	44.18
3020	GA13	Valid	423.03	0.51	4.750E-06	0.125	3.58E+06	20.0	9	72.86	8965	738.0	826.1194	49.10
3811	FL12	Valid	377.27	0.73	4.357E-06	0.165	3.05E+06	20.0	9	582.33	5955	460.0	514.9254	60.55
3018	OK40	Valid	487.84	0.69	4.367E-06	0.235	4.58E+06	15.0	9	1243.92	6770	631.0	706.3433	65.73
3804	FL12	Valid	362.27	0.63	4.358E-06	0.185	3.95E+06	19.5	12	599.71	6095	514.0	575.3731	73.64
3008	NC37	Valid	518.00	0.72	5.144E-06	0.180	4.03E+06	21.3	8	201.83	8885	646.0	723.1343	99.46
3019	GA13	Valid	437.15	0.80	4.556E-06	0.210	3.75E+06	20.0	9	98.05	6740	487.5	545.709	201.01
3018	MS28	Valid	467.91	0.74	4.517E-06	0.195	4.25E+06	20.0	9	184.50	8450	563.0	630.2239	272.61
4160	OK40	Valid	424.90	0.64	3.925E-06	0.205	3.95E+06	15.0	9	124.63	6105	591.5	662.1269	292.88
4138	FL12	Valid	441.45	0.91	4.246E-06	0.260	3.33E+06	20.0	8	71.00	5770	432.0	483.5821	687.85
3028	AL1	Valid	487.79	487.79 0.85 4.083E-06 0.190 5.53E+06 20.0 10 91.20 7220 514.5 575.9328 754.81										
3019	MS28	Missing data							N/A					
4059	FL12	Missing data							N/A					

 Table 5-5.
 Data on the LTPP JPCP Test Sections in Wet and No-Freeze Climate Zone

Note 1: Annual ESALs in thousands in the LTPP lane

Note 2: IRI Deterioration Rate = Δ IRI/year/annual ESALs $\times 10^{6}$

5.3.3 The Effect of Concrete Properties on the Pavement Performance

To figure out the relationship between each material property and IRI deterioration rate, descriptive statistical analysis was conducted.

5.3.3.1 The Effect of Compressive Strength

Figure 5-14 shows a plot of IRI deterioration rate versus compressive strength of the concrete slab. Though the trend of fitted line seems to be reasonable, the IRI deterioration rate did not correlate well with the compressive strength of concrete slab, with an R^2 value of 0.0108.

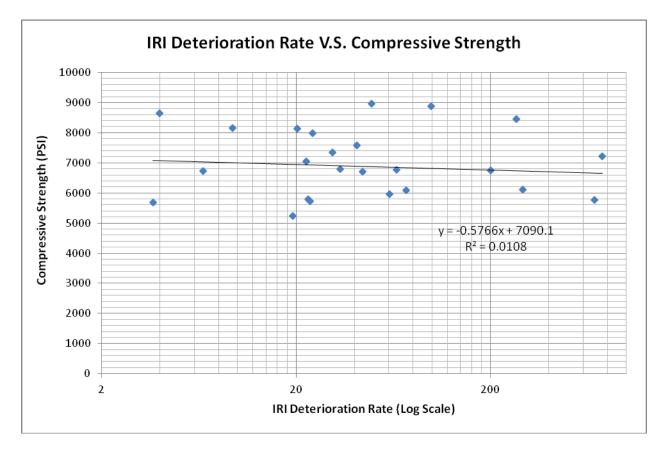


Figure 5-14. IRI deterioration rate versus compressive strength of concrete.

5.3.3.2 The Effect of Tensile Strength

Figure 5-15 shows a plot of IRI deterioration rate versus tensile strength of the concrete slab. The trend of fitted line seems to be reasonable but the IRI deterioration rate does not correlate well with the compressive strength of concrete slab, with an R^2 value of 0.0772

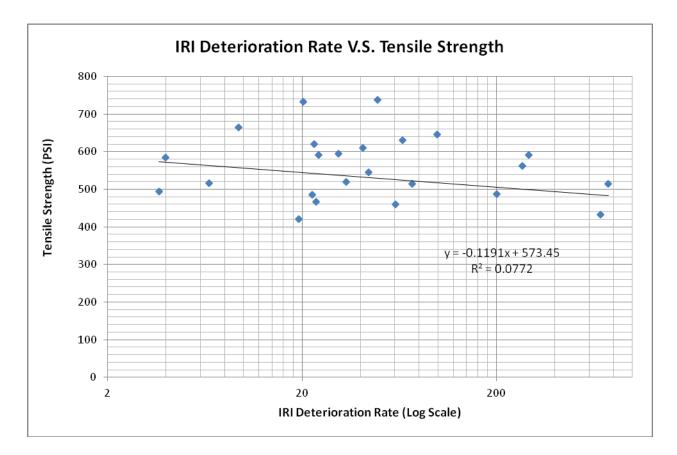


Figure 5-15. IRI deterioration rate versus tensile strength of concrete.

5.3.3.3 The Effect of Coefficient of Thermal Expansion of Concrete

Figure 5-16 shows a plot of IRI deterioration rate versus coefficient of thermal expansion of the concrete slab. Similarly, the coefficient of thermal expansion shows a reasonable trend along with the IRI deterioration rate but it did not have a strong correlation with a R^2 value of 0.0139.

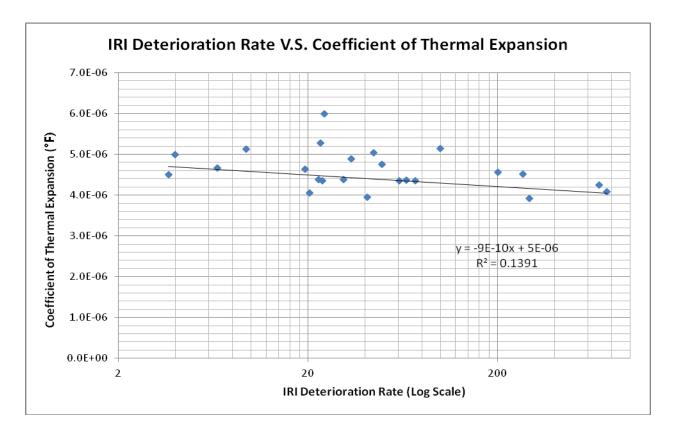


Figure 5-16. IRI deterioration rate versus coefficient of thermal expansion.

5.3.3.4 The Effect of Elastic Modulus

Figure 5-17 shows a plot of IRI deterioration rate versus elastic modulus of concrete. The IRI deterioration rate did not correlate well with the elastic modulus of concrete, with an R^2 value of 0.0497. Similarly, the trend of the fitted line seems to be reasonable.

5.3.3.5 The Effect of Slab Thickness

Figure 5-18 shows a plot of IRI deterioration rate versus slab thickness for the 24 test sections in the Wet and No-Freeze Climate Zone. Similar to the Figure 5-5 which shows 97 test sections in the U.S., slab thickness does not have a strong correlation with the IRI deterioration rate.

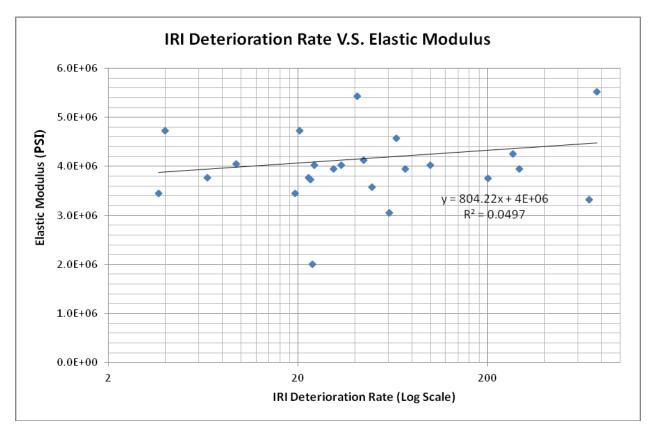


Figure 5-17. IRI deterioration rate versus elastic modulus.

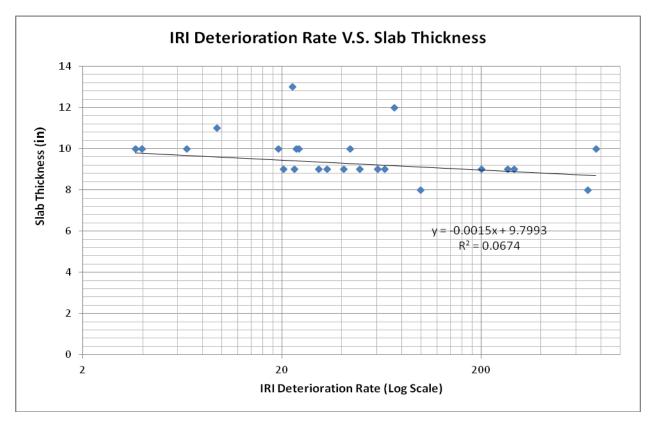


Figure 5-18. IRI deterioration rate versus slab thickness.

5.3.3.6 The Effect of Slab Length

Figure 5-19 shows a plot of IRI deterioration rate versus slab length for the 24 test sections in the Wet and No-Freeze Climate Zone. Similar to the Figure 5-6 which shows 97 test sections in the U.S., slab length does not correlate well with the IRI deterioration rate with an R^2 value of 0.0136.

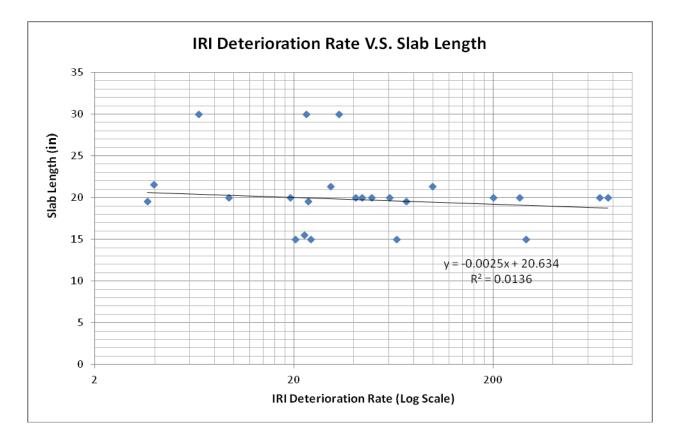


Figure 5-19. IRI deterioration rate versus slab length.

5.3.4. Critical Stress Analysis

Each single concrete property showed reasonable trend but not strong correlation with IRI deterioration rate. This can be explained by the fact that the pavement deterioration process is very complex, and all material factors interact with one another in affecting the performance of the pavement. This section represents the results of a critical stress analysis to determine the maximum stresses and the stress-to-strength ratios for these pavements.

5.3.4.1 Method of Analysis

FEACONS (Finite Element Analysis of Concrete Slab) program, which was developed at the University of Florida for stress analysis of concrete pavements, was used to perform the critical stress analysis. Previous studies (Wu and Larsen, 1993) have shown that the most critical loading condition on a concrete pavement occurs when there is a positive temperature differential in the concrete slab (i.e., when the temperature at the top of the slab is higher than that at the bottom) and a heavy load is applied to the middle edge of the slab. The maximum stress caused by a 22-kip axial load which is applied at the middle of the edge of the concrete slab and 20 °F of the temperature differential between top and bottom of the concrete slab was computed for each of these 24 test sections using the FEACONS program. Figure 5-20 shows the finite element meshes for the different slab length and the locations of applied load.

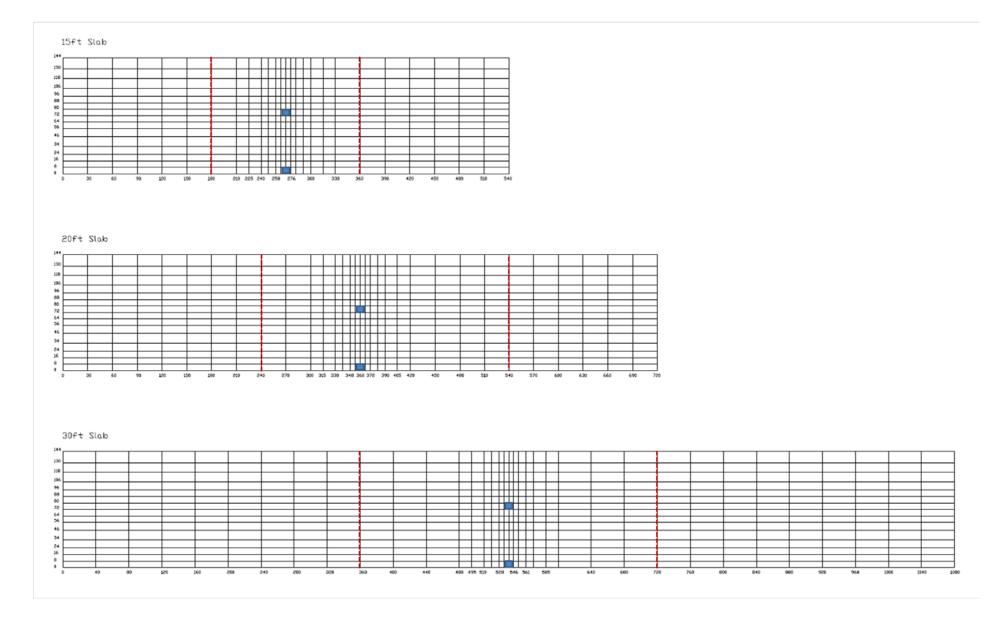


Figure 5-20. The finite element meshes and locations of applied loads for different slab length.

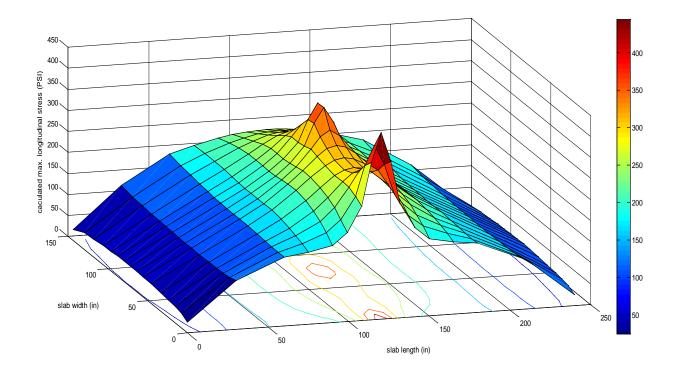


Figure 5-21. Calculated critical stress for a test section.

Figure 5-21 shows calculated longitudinal stresses for a typical test section (GA3015). The two points having the highest longitudinal stress are the locations of applied load.

5.3.4.2 The Relationship between Maximum Computed Stress and Pavement Performance

The maximum computed stresses from the critical stress analysis were compared to the IRI deterioration rate of the selected test sections. Figure 5-22 shows a plot of maximum computed stress versus the IRI deterioration rate of the selected test sections. It can be seen that the IRI deterioration rate increases as the computed maximum stress increases. However, the R² of the correlation is only 0.0501, which is fairly low.

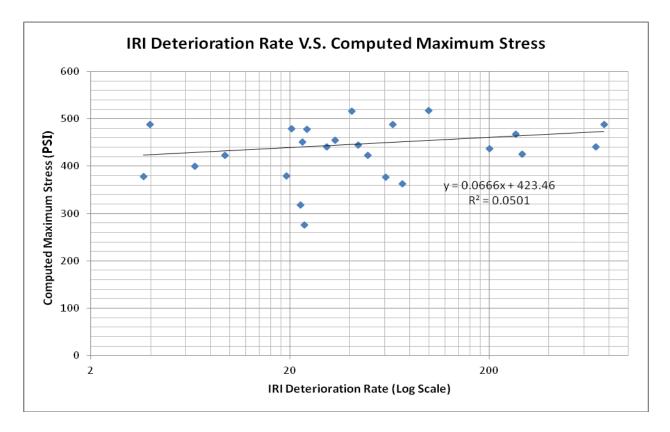


Figure 5-22. IRI deterioration rate versus maximum computed stress.

5.3.4.3 The Relationship between Stress-Strength Ratio and Pavement Performance

The flexural strength (or modulus of rupture) of the concrete for each test section was estimated from the tensile strength of the concrete, which was available in the LTPP database, by the following equation (Raphael, 1984):

$$MR = 7.5/6.7 \times Fst$$
 (5-2)

Where:

MR = Flexural Strength (PSI)

Fst = Split Tensile Strength (PSI)

The maximum computed stress from the critical stress analysis was divided by the flexural strength to obtain the stress-to-strength ratio for each test section. The computed stress-to-strength ratios are presented in Table 5-5.

According to fatigue failure theory, the stress-to-strength ratio is related to the number of cycles to failure for the concrete. A lower stress-to-strength ratio would predict a higher number of cycles to failure for the concrete slab, and thus, it would be a better predicted performance for the concrete pavement. The stress-to-strength ratios for these selected JPCP test sections were compared to the observed performance of these pavements to determine if they could be used as predictors for the performance of these pavements.

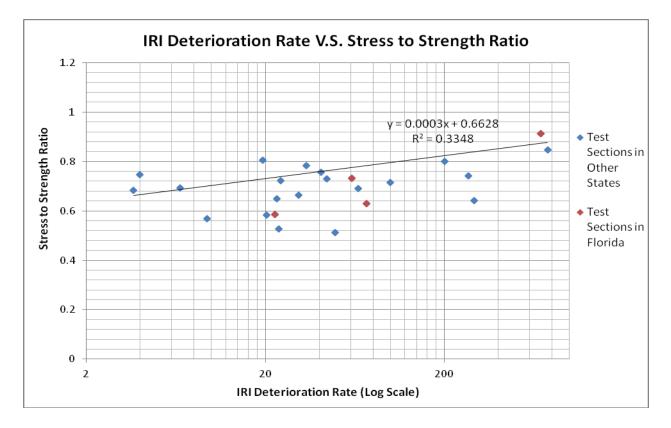


Figure 5-23. IRI deterioration rate versus stress-to-strength ratio.

Figure 5-23 shows a plot of IRI deterioration rate versus stress-to-strength ratio. It can be seen that the stress-to-strength ratio correlates well with the IRI deterioration rate, with a R^2 value of 0.3348. A lower stress-to-strength ratio is related to better pavement performance with a lower IRI rate of deterioration.

5.4. Evaluation of Florida Concrete Pavement Designs by Critical Stress Analysis

5.4.1 Overview

In the last section, critical stress analysis was performed on the LTPP JPCP test sections in the Wet and No-Freeze Zone in the U.S. and it was found that the computed maximum stress to flexural strength ratios relate well to the deterioration rate of the pavement. The IRI deterioration rate increases as the stress-to-strength ratio increases, as fatigue theory would predict. Thus, the computed stress-to-strength ratio can be used as a performance indicator of concrete pavements. In this section, critical stress analysis is applied to the Florida concrete pavement designs, Types I-A, I-B and II.

5.4.2 Evaluation of Effect of Various Factors

The FEACONS program was used to perform critical stress analysis on the Florida concrete pavement designs subject to the variation of various factors. The three designs considered in this study, namely Types I-A, I-B and II differ mainly in the base and subbase structure. When they are modeled by the FEACONS program, the differences among these three designs are mainly in the effective modulus of subgrade reaction used.

5.4.2.1 The Effect of Subgrade Modulus

Figure 5-24 shows the calculated maximum stress in the concrete slab with thickness of 11, 12 and 13 inches versus subgrade modulus in the range of LTPP database. A slab length of 15 ft and slab width of 12 ft, and typical properties of concrete made with Brooksville coarse aggregate were used in this analysis. It can be seen that for these three slab thicknesses, the difference in subgrade modulus does not have any significant effect on the maximum stresses.

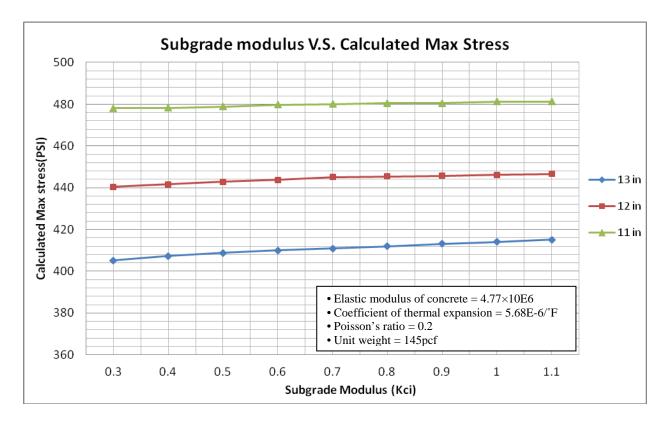


Figure 5-24. Calculated maximum stress for different subgrade modulus and slab thickness.

5.4.2.2 The Effect of Elastic Modulus and Coefficient of Thermal Expansion

The elastic modulus and the coefficient of thermal expansion of the concrete pavement in the LTPP database ranged approximately from 3000 to 6000 ksi and 4.0E-6 to 6.0E-6/°F, respectively. Using the different values of elastic modulus and coefficient of thermal expansion in the range of LTPP database, the maximum stresses in 13-inch slabs under the critical loading conditions were computed by FEACONS program and presented in Figure 5-25. The figure shows that the calculated maximum stress increases by around 30% when the elastic modulus changes from 3000 to 6000 ksi. Also, the calculated maximum stress increases by around 25% when the coefficient of thermal expansion changes from 4.0E-6 to 6.0E-6/°F.

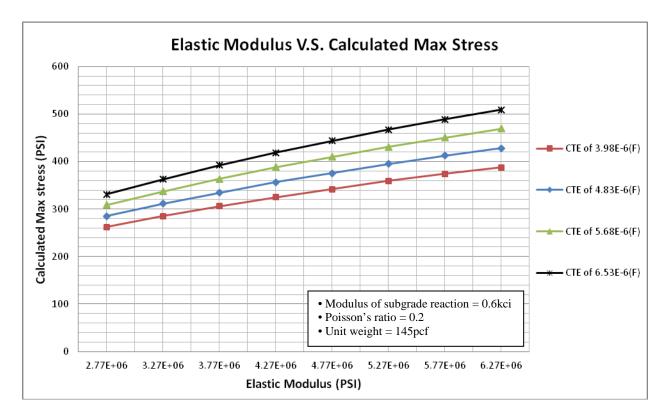


Figure 5-25. Calculated maximum stresses for different elastic modulus and CTE.

5.4.2.3 The Effect of Poisson's Ratio and Unit Weight

The Poisson's ratio and unit weight for the concrete pavement in the LTPP database ranged from 0.1 to 2.5 and 135 pcf to 155 pcf, respectively. Using the different values of Poisson's ratio and unit weight in the range of LTPP database, the maximum stresses in 13-inch slabs under the critical loading conditions were computed by FEACONS program and presented in Figure 5-26. The figure shows that the calculated maximum stress increases by less than 1% when the unit weight changes from 135 to 155 pcf. Also, the calculated maximum stress increases by less than 3% when the Poisson's ration changes from 0.10 to 0.25.

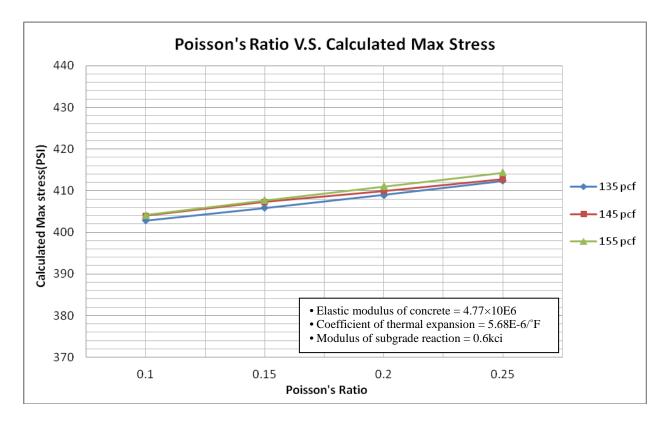


Figure 5-26. Calculated maximum stress for different Poisson's ratio and unit weight.

5.4.3 Evaluation of the Recommended Florida Concrete Pavement Designs

From the result of critical stress analysis, the modulus of subgrade reaction has little effect on the maximum stress in the concrete slabs when the slab thickness is 11 inches or higher. Thus the maximum stresses in Types I-A, I-B and II pavements would be affected mainly by the elastic modulus and coefficient of thermal expansion of the concrete as well as the slab thickness. The extent of the effects of these three factors on the Florida designs were evaluated and presented in this section. The following parameters were used in the critical stress analysis using the FEACONS program:

Slab length = 15 ft Slab width = 12 ft Modulus of subgrade reaction, $k_s = 0.6$ kci Edge stiffness, $k_e = 30$ ksi Joint linear stiffness, $k_l = 500$ ksi Joint torsion stiffness $k_t = 1000$ k-in/in Applied load = 22 kips Temperature differential = 20°F Poisson's ratio = 0.2 Unit weight =145 pcf

Concrete using Brookville aggregate is used in the analysis. The coefficient of thermal expansion of the concrete is 5.68×10^{-6} /°F. Since the elastic modulus of the concrete changes as the strength of the concrete changes, the estimated elastic modulus (E) of concrete is estimated from the modulus of rupture (f_r) from the following regression equation (Tia et al., 1989).

$$E = 4.20(W^{1.5})f_r \tag{5-3}$$

Where:

E = Elastic modulus, psi,w = Unit weight, pcf; and, f_r = Modulus of rupture, psi.

Table 5-6.Maximum Computed Stresses and Stress-to-strength Ratios for Concrete
Pavement with Different Concrete Flexural Strength and Slab Thicknesses

	Maximum Computed stress (PSI)				Stress-to-strength Ratio			
Flexural Strength (PSI)	500	600	700	800	500	600	700	800
11 inch thick slab	413	457	500	537	0.83	0.76	0.71	0.67
12 inch thick slab	385	425	461	494	0.77	0.71	0.66	0.62
13 inch thick slab	358	394	425	454	0.72	0.66	0.61	0.57
14 inch thick slab	333	365	392	417	0.67	0.61	0.56	0.52

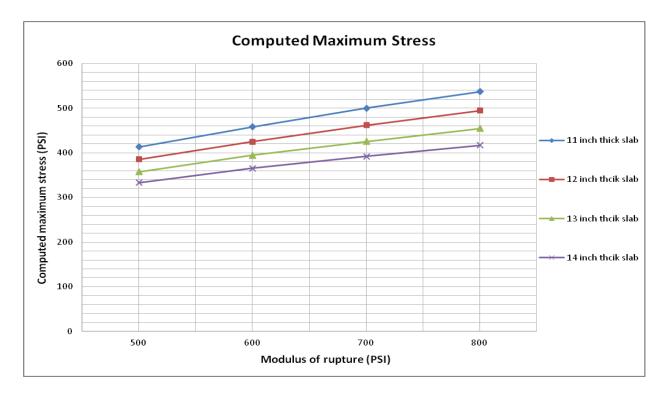


Figure 5-27. Calculated maximum stress with different modulus of rupture and unit slab thickness.

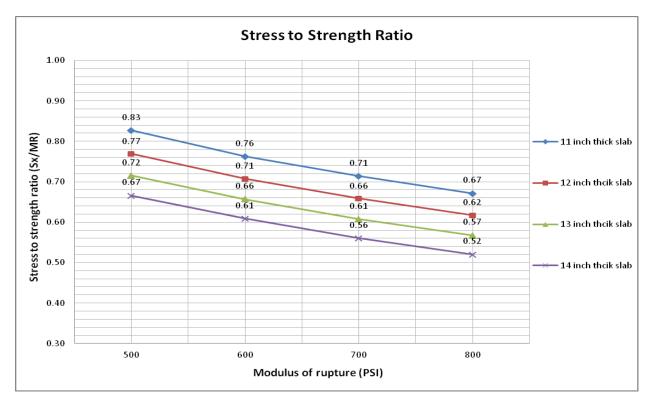


Figure 5-28. Calculated stress-to-strength ratio with different modulus rupture and unit slab thickness.

Figure 5-27 shows plots of computed maximum stress versus modulus of rupture for different slab thicknesses. It can be seen that the maximum stress generally increases with increasing modulus of rupture. This is due to the increase in elastic modulus of the concrete with increase in flexural strength. Figure 5-28 shows plots of maximum stress-to-strength ratio versus modulus of rupture of concrete for different concrete slab thicknesses. It can be seen that the stress-to-strength ratio decreases as the modulus of rupture of the concrete increases, if the concrete is made of the same type of aggregate as in the case of this analysis. For concrete slab thickness of 13 inches, the computed stress-to-strength ratios are 0.72, 0.66, 0.61 and 0.57 for concrete flexural strength of 500, 600, 700 and 800 psi, respectively. For concrete slab thickness of 14 inches, the computed stress-to-strength ratios are 0.67, 0.61, 0.56 and 0.52 for concrete flexural strength of 500, 600, 700 and 800 psi, respectively.

CHAPTER 6 LIFE CYCLE COST OF LONG-LIFE CONCRETE PAVEMENTS FOR FLORIDA

6.1 Concrete Pavement Designs

From the results of MEPDG analysis performed in this study, it appears that three typical Florida concrete pavement designs, which have been referred to as Type I-A, Type I-B and Type II designs in this study, could possibly be used as long-life pavements if the slab thickness was adequate and the concrete properties were right – low elastic modulus, low coefficient of thermal expansion and adequate flexural strength.

Table 6-1 shows the features of these three designs. Type I-A pavement has a PCC slab of varied thickness with a 4-inch treated permeable base over a 2-inch asphalt structural course. Type I-B pavement consists of a PCC slab of varied thickness with a 4-inch asphalt concrete base. Both Type I-A and I-B pavements have a 12-inch Type B stabilized subgrade with a minimum LBR of 40. Type II pavement has a PCC slab of varied thickness with a 6-inch granular permeable base over 54-inch A-3 soil.

Tuno	Design Sla	b Thickness	Page Type		
Туре	Minimum (inch)	Maximum (inch)	Base Type	Subbase Type	
Type I-A			4 inch treated permeable base over 2 inch asphalt structural course	12 inch Type B stabilized subgrade (LBR 40)	
Type I-B	8	N/A	4 inch asphalt concrete base	12 inch Type B stabilized subgrade (LBR 40)	
Type II			6 inch special stabilized sub base over 54 inch special select embankment	None	

Table 6-1. Features of Type I-A, Type I-B and Type II Concrete Pavement Designs

6.2 Concrete Pavement General Structure

To estimate the cost of construction for pavements with these three types of designs previously described, a general construction design was selected. This general design is shown in Figures 6-1 and 6-2. The cost estimates for these three types of pavement were developed using a 4-lane highway design with 2 lanes traveling in each direction for a length of 10 miles. Concrete pavement slabs with a width of 13 ft and a length of 15 ft were used. Concrete shoulders with a width of 3 ft and joint spacing of 15 ft were used. Concrete pavement and shoulder thickness was varied from 10 to 14 inches, increasing by 1 inch increments, and the total construction costs of the pavements with the various concrete thicknesses were estimated.

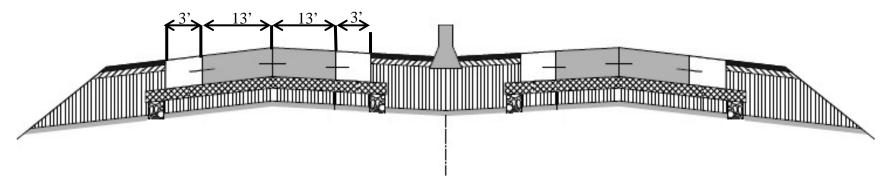


Figure 6-1. Type I-A, Type I-B and II concrete general structural design – sectional view.

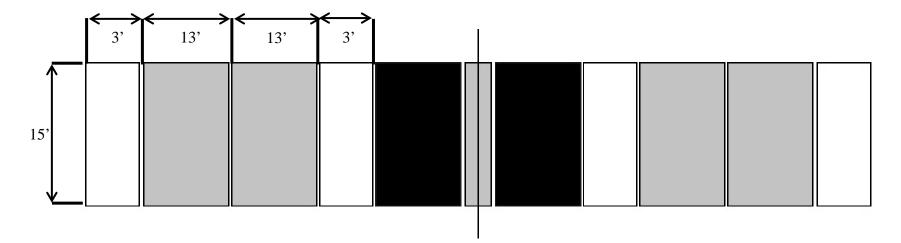


Figure 6-2. Type I-A, Type I-B and II concrete general structural design – plan view.

6.3 Estimation of Construction Cost of Florida Concrete Pavements

6.3.1 Construction Cost of Concrete Slabs and Shoulders

Historical construction costs of concrete slabs and shoulders were provided by Concrete Paving Alliance of Florida and were used in the estimation of the construction costs of concrete slabs and shoulders. Table 6-2 shows the historical unit cost of concrete construction in terms of dollars per square yard of concrete for various slab thicknesses. These unit costs include the project overhead costs for the PCC pavement work, the cost of manufacturing the concrete on site in a concrete batch plant, furnishing and placement of all reinforcement, placement and finish of the concrete pavement, sawing of the joints and clean-up costs.

Table 6-2. PCC Pavement Historical Cost Data					
PCC Pavement Thickness (inches)	Cost per SY (\$)				
8.5	\$ 38.94				
9	\$ 48.17				
10	\$ 48.27				
10.5	\$ 48.38				
11.5	\$ 53.28				
12	\$ 64.20				
14	\$ 64.87				

The unit costs were plotted against concrete thickness as shown in Figure 6-3, and a trend line was developed through linear regression analysis. The developed trend line was then used to estimate the construction cost of the concrete slabs and shoulders of various thicknesses.

Table 6-3 shows the estimated construction cost for the concrete slabs for 10 miles of 4lane concrete pavement of various thicknesses as described in Section 6.2. Table 6-4 shows the estimated construction cost for the concrete shoulders of various thicknesses. The detailed calculations are shown in Appendix A.

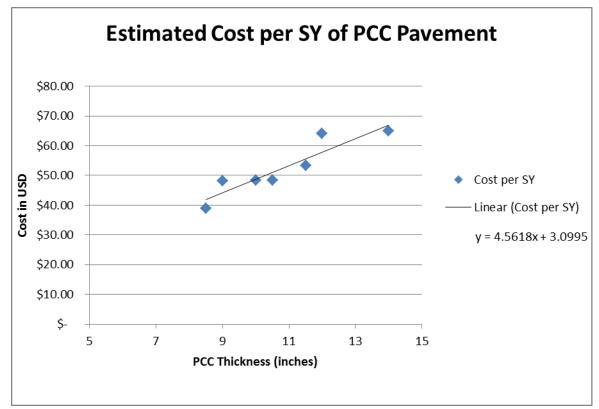


Figure 6-3. Estimated unit cost of concrete slabs and shoulders

Table 6-3. Estimated Cost of Concrete Slabs for 10 Miles of 4-Lane Pavement							
	Mainline Pavement	Cost/Unit	Units	Quantity/	Total	Cost (\$)	
	Thickness		Onits	Direction	Quantity	COSt (\$)	
	10 inch	\$48.72	SY	152533	305067	\$14,862,085	
	11 inch	\$53.28	SY	152533	305067	\$16,253,738	
	12 inch	\$57.84	SY	152533	305067	\$17,645,392	
	13 inch	\$62.40	SY	152533	305067	\$19,037,045	
	14 inch	\$66.96	SY	152533	305067	\$20,428,698	
	11 inch 12 inch 13 inch	\$53.28 \$57.84 \$62.40	SY SY SY	152533 152533 152533	305067 305067 305067	\$16,253,7 \$17,645,3 \$19,037,0	

Tabl CI - D-

Shoulder Pavement			Quantity/		
Thickness	Cost/Unit	Units	Direction	Total Quantity	Cost (\$)
10 inch	\$ 48.72	CY	35200	70400	\$ 3,429,712
11 inch	\$ 53.28	CY	35200	70400	\$ 3,750,863
12 inch	\$ 57.84	CY	35200	70400	\$ 4,072,013
13 inch	\$ 62.40	CY	35200	70400	\$ 4,393,164
14 inch	\$ 66.96	CY	35200	70400	\$ 4,714,315

 Table 6-4.
 Estimated Cost of Concrete Shoulders for 10 Miles of 4-Lane Pavement

6.3.2 Construction Cost of Base and Subbase

The historical cost data, as provided by FDOT, were used in estimating the construction cost of the base and subbase for Type I-A, Type I-B and Type II pavements. Tables 6-5, 6-6 and 6-7 show the estimated costs of the individual items as well as the total cost of the base and subbase for 10 miles of 4-lane concrete pavements with Type I-A, Type I-B and Type II designs, respectively. The detailed calculations are shown in Appendix A.

Table 6-5.	Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with
	Type I-A Design

Pavement Items:	Cost/Unit	Units	Quantity/ Direction	Total Quantity	Cost (\$)
4" Permeable Base Layer	\$ 6.61	SY	152533	305067	\$2,016,491
2" Structural AC Inter-Layer	\$ 85.00	Ton	15307	30613	\$2,602,112
Prime Coat (Mainline and Shoulders)	\$ 4.00	Gallons	93867	187733	\$ 750,933
Type B Stabilized	\$ 4.00	SY	152533	305067	\$1,220,267

Total	\$6,589,803

Pavement Items:	Cost/Unit	Units	Quantity/ Direction	Total Quantity	Cost (\$)
4" Structural AC Inter-Layer Prime Coat (Mainline and	\$ 85.00	Ton	61226	122452	\$10,408,449
Shoulders)	\$ 4.00	Gallons	93867	187733	\$ 750,933
Type B Stabilized	\$ 4.00	SY	152533	305067	\$1,220,267
Total					\$12,379,649

Table 6-6.Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with
Type I-B Design

 Table 6-7.
 Estimated Cost of Base and Subbase for 10 Miles of 4-Lane Pavement with

 Tume II Design

Type II Design						
Pavement Items:	Со	st/Unit	Units	Quantity/ Direction	Total Quantity	Cost (\$)
6" Permeable Base Layer	\$	11.84	SY	152533	305067	\$3,611,989
54 " Prepared Soil	\$	8.06	SY	152533	305067	\$2,458,837
Total						\$6,070,827

6.3.3 Total Construction Cost of Pavement

The estimated total costs of construction for the entire pavement were obtained by adding the construction cost of the concrete slabs and shoulders to the construction of the base and subbase for the pavements with the three designs.

Tables 6- 8, 6-9 and 6-10 show the estimate total costs of pavements with concrete thicknesses of 10 through 14 inches, for Type I-A, Type I-B and Type II designs, respectively. The predicted service lives of these pavements as predicted by MEPDG and presented in Section 3.9 are also shown on these tables.

Pavement Design Thickness	Cost (\$)	Predicted Life (yrs)
10 inch	\$24,881,600	27
11 inch	\$26,594,404	33
12 inch	\$28,307,208	42
13 inch	\$30,020,012	51
14 inch	\$31,732,816	56

Table 6-8.Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type I-A
Design.

Table 6-9.Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type I-B
Design.

Pavement Design Thickness	Cost (\$)	Predicted Life (yrs)	
10 inch	\$30,671,446	24	
11 inch	\$32,384,250	30	
12 inch	\$34,097,054	40	
13 inch	\$35,809,858	50	
14 inch	\$37,522,662	53	

Table 6-10.Total Cost of Construction for 10 Miles of 4-Lane Pavement with Type II
Design.

Pavement Design Thickness	Cost (\$)	Predicted Life (yrs)
10 inch	\$24,362,624	28
11 inch	\$26,075,428	36
12 inch	\$27,788,232	43
13 inch	\$29,501,036	56
 14 inch	\$31,213,839	60

6.4 Life Cycle Cost Analysis

Using the predicted lives of the pavement of different concrete slab thicknesses, the total estimated costs for the various types of pavements were converted to equivalent annual costs

using different interest rates. The conversion from total construction cost (or present worth) to equivalent annual cost (or annual cost) was done using the following equation:

$$A = PW / \{ [(1+i)^{n} - 1] / i (1+i)^{n} \}$$
(6-1)

Where:

A = Annual cost

PW = Present worth (or total construction cost)

n = Number of year (or expected life)

I = Interest rate

When the interest of construction cost was not considered, the annual cost was calculated by dividing the total construction cost by the expected life of the pavement in years.

Table 6-11 presents the computed annual costs for 10 miles of 4-lane Type I-A pavements of various concrete slab thicknesses using interest rates of 3.5% and 5% and also for the case when interest of cost is not considered. Similarly, Tables 6-12 and 6-13 present the computed annual costs for 10 miles of 4-lane Type I-B and Type II pavements, respectively.

In comparing among the annual costs for the three designs, it can be seen that the Type II design gives the lowest annual cost, followed by Type I-A and Type I-B. The most cost effective slab thickness to be used depends on the interest to be used in the analysis. When cost of interest is not considered, using 14-inch concrete slab gives the least annual cost for all three designs. With concrete slab thickness of 14 inches, the expected service for Type I-A, I-B and II designs are 56, 53 and 60 years, respectively. When an interest rate of 3.5% is considered, the cost effective slab thickness for all three designs is 13 inches. With concrete slab thickness of 13 inches, the expected service for Type I-A, I-B and II designs are 51, 50 and 56 years, respectively.

Concrete Slab Thickness	Total Cost	Expected Life	No Interest	I= 3.5%	I = 5%
(inch)	(\$)	(year)	Annua	l Cost (\$)	
10	24,881,600	27	921,541	1,439,461	1,699,211
11	26,594,404	33	805,891	1,371,538	1,661,885
12	28,307,208	42	673,981	1,296,421	1,624,684
13	30,020,012	51	588,628	1,270,494	1,636,951
14	31,732,816	56	566,657	1,300,008	1,697,074

 Table 6-11.
 Computed Annual Cost for 10 Miles of 4-Lane Type I-A Pavement

Table 6-12.	Computed Annual Cost for 10 Miles of 4-Lane Type I-B Pavement
-------------	---

Concrete Slab Thickness	Total Cost	Expected Life	No Interest	I= 3.5%	I = 5%
(inch)	(\$)	(year)	Annual	Cost (\$)	
10	30,671,446	24	1,277,977	1,909,998	2,222,787
11	32,384,250	30	1,079,475	1,760,775	2,106,642
12	34,097,054	40	852,426	1,596,672	1,987,114
13	35,809,858	50	716,197	1,526,707	1,961,547
14	37,522,662	53	707,975	1,566,233	2,028,976

Table 6-13. Computed Annual Cost for 10 Miles of 4-Lane Type II Pavement

Concrete Slab Thickness	Total Cost	Expected Life	No Interest	I= 3.5%	I = 5%
(inch)	(\$)	(year)	Annual	Cost (\$)	
10	24,362,624	28	870,094	1,378,989	1,635,281
11	26,075,428	36	724,317	1,285,106	1,575,854
12	27,788,232	43	646,238	1,259,512	1,583,744
13	29,501,036	56	526,804	1,208,578	1,577,718
14	31,213,839	60	520,231	1,251,320	1,648,970

CHAPTER 7 SUMMARY AND RECOMMENDATIONS

7.1 Findings from MEPDG Analyses

The MEPDG model, calibrated for the Florida conditions, was used to analyze the performance of three typical concrete pavement designs in Florida to evaluate their suitability for use as long-life concrete pavements and the effects of various design parameters on their performance. These three designs are referred to as Types I-A, I-B and II in this report and are presented in Table 3-1 and Figure 3-1.

Concrete slab thickness, concrete flexural strength, and the aggregate used in the concrete were found to be the three most significant factors affecting the predicted performance of the pavement evaluated. The three aggregates used in the analysis included Brooksville limestone, Calera limestone and river gravel. For concrete with the same design flexural strength, Brooksville limestone was shown to give the best predicted performance, followed by Calera limestone, and the river gravel. The better predicted performance was due to the relatively low elastic modulus and low coefficient of thermal expansion of the concrete made with Brooksville limestone. When the same Brooksville aggregate was used in the concrete, increasing the modulus of rupture of the concrete gave improved predicted performance and increased service life to the pavement.

MEPDG analyses were performed to evaluate the effects of (1) types of base material, (2) stiffness of the base material, (3) erodibility of the base material, and (4) friction between the concrete and base layer on the predicted performance of these three concrete pavement designs. The predicted performance of the pavement appeared to have improved slightly with an increase in base thickness. However, the type of base material and the stiffness of the base material appeared to have no significant effect on the predicted performance. Using different erodibility

factor and friction factor for the base materials appeared to have no significant effect on the predicted performance according to the results of the MEPDG analyses.

MEPDG analyses were performed to determine the predicted service lives of concrete pavements using Type I-A, I-B and II designs. An initial AADTT of 17,000, which represents high-volume truck traffic, was used in the analysis. The concrete made with Brooksville aggregate and with a modulus of rupture of 650 psi was used. The predicted service lives for these three designs with pavement thickness varying from 10 to 14 inches are presented in Table 3-44. When the concrete slab thickness is 13 inches or more, the expected service of all three designs are 50 years or more. Among the three designs, Type II has the best predicted performance, followed by Type I-A and then Type I-B.

7.2 Findings from Drainage Evaluation

Sensitivity analysis was performed using the DRIP 2.0 program to evaluate the drainage characteristics of Type I-A and Type II concrete pavement designs using the steady flow method and the time-to-drain method. The required base permeability and the corresponding times-to-drain for various combinations of number of lanes and pavement cross slopes for Type I-A and Type II designs are presented in Table 4-31 and 4-32, respectively. In comparison, the Type II design with a 6-inch permeable base shows better drainage characteristics than the Type I-B design with a 4-inch permeable base. For pavements with 2 to 4 lanes and pavement cross-slope from 2% to 6%, the required base permeability varies from 200 to 700 ft/day for Type I-A design, and varies from 100 to 500 ft/day for Type II design. If the same base permeability, pavement slope and number of lanes are used in both designs, Type II design has a lower time-to-drain than the Type I-A design.

Type I-B concrete pavement has a 4-inch asphalt concrete base layer. Since the asphalt concrete layer is a non-permeable layer, the steady-flow analysis and the time-to-drain analysis could not be appropriately performed on this type of pavement. Long-term monitoring of Type I-B pavement is needed to determine whether or not there will be drainage related issue with the use of asphalt concrete base in concrete pavement in Florida.

7.3 Findings from Analysis of LTPP Data and Critical Stress Analysis

The Long-Term Pavement Performance (LTPP) database was used to evaluate the effects of various factors, which included environmental conditions, drainage types, concrete properties, base types, subgrade types and concrete slab length, on performance of Jointed Plain Concrete Pavements (JPCP) in the US with emphasis on Florida and its neighboring states. Critical stress analysis was also performed on the selected LTPP JPCP sections to determine the maximum stress in the concrete slab under a critical load and temperature condition. The maximum computed critical stress for each condition was divided by the modulus of rupture of the concrete to determine the stress-to-strength ratio.

The computed critical stress-to-strength ratio was found to be the most significant parameter which can be related to the performance of the LTPP pavements. This relationship is presented in Figure 5-23. A lower stress-to-strength ratio is related to better observed pavement performance. The better performing pavements were noted to have a computed stress-tostrength ratio of less than 0.70.

Critical stress analysis was also performed on the three Florida concrete pavement designs. Results from the critical stress analysis show that the most significant factors affecting the stress-to-strength ratios are the concrete slab thickness and the concrete properties which include the elastic modulus, modulus of rupture and coefficient of thermal expansion. Variations in the base and subbase properties were found to have minimal effects on the stress-

189

to-strength ratios for concrete slab thickness of 11 inches or higher. This observed result agrees well with the findings from the MEPDG analysis that the most significant factors affecting the performance of the concrete pavement are the concrete slab thickness and the concrete properties.

Similar to the results from MEPDG analysis, when the same aggregate is used in the concrete, increasing the flexural strength of the concrete will result in better predicted pavement performance. When the concrete made with Brooksville aggregate was used, for concrete slab thickness of 13 inches, the computed stress-to-strength ratios were 0.72, 0.66, 0.61 and 0.57 for concrete flexural strength of 500, 600, 700 and 800 psi, respectively.

7.4 Findings from Life Cycle Cost Analysis

The cost estimates for Type I-A, Type I-B and Type II pavement with concrete slab varying from 10 inches to 14 inches were developed. The predicted service lives of these pavements were based on the results of MEPDG analysis using a concrete made with Brooksville aggregate and modulus of rupture of 650 psi. The estimated total costs, predicted service lives and annual costs for these three designs are shown in Tables 7-11, 7-12 and 7-13. Type II design has the lowest cost estimate, which is slightly more than that for Type I-A design, while Type I-B design has the highest cost estimate.

When cost of interest was not considered, using 14-inch concrete slab gave the least annual cost for all three designs. With concrete slab thickness of 14 inches, the expected service for Type I-A, I-B and II designs are 56, 53 and 60 years, respectively. When an interest rate of 3.5% was considered, the most cost effective slab thickness for all three designs was 13 inches. With concrete slab thickness of 13 inches, the expected service for Type I-A, I-B and II designs are 51, 50 and 56 years, respectively.

7.5 Recommended Long-Life Concrete Pavement Designs for Florida

From the results of in this study, it appears that the three typical Florida concrete pavement designs, which have been referred to as Type I-A, Type I-B and Type II designs in this study, can be used as long-life pavements if the slab thickness was adequate and the concrete has low elastic modulus, low coefficient of thermal expansion and adequate flexural strength. Among the three designs evaluated, Type II pavement has the best predicted performance from the MEPDG analysis and the best drainage characteristics from the results of the drainage evaluation using the steady flow method and the time-to-drain method. Type II pavement also has the lowest cost estimate.

Type II design is recommended as the preferred design for use as long-life concrete pavements in Florida. However, if the special select A-3 soil is not available, Type I-A and Type I-B can also be used. A concrete slab thickness of 13 or 14 inches is recommended to be used. The present FDOT construction specifications for these three types of design are to be followed. In addition to meeting the present FDOT specification requirements for these three designs, the concrete mixture to be used must be designed and evaluated by the following procedure:

- (1) Design the concrete mix to give a flexural strength of at least 650 psi at 28 days. Use an aggregate which has a past history of producing concrete of low elastic modulus and low coefficient of thermal expansion.
- (2) Measure the flexural strength, elastic modulus and coefficient of thermal expansion the designed concrete mix at 28 days.
- (3) Perform MEPDG analysis to evaluate the predicted performance of the designed pavement for a design life of 50 years, using the measured concrete flexural strength, elastic modulus and coefficient of thermal expansion as input properties for the concrete. If the predicted life of the pavement is at least 50 years, the concrete mix would be acceptable for the project. If the predicted life is less than 50 years, a new concrete mix can be designed by either specifying a higher flexural strength or using a different aggregate. Steps 1 through 3 would be repeated until an acceptable concrete mix for the project is obtained.

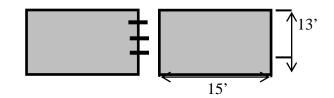
It is recommended that FDOT establish a database of concrete mix designs which are acceptable for use in long-life concrete pavements, so that optimum concrete mixes can be designed and selected efficiently for this purpose. A research study to evaluate the drainage requirements for these concrete pavement designs is also recommended.

LIST OF REFERENCES

- AASHTO, *Guide for Design of Pavement Structures*, Volume 2, American Association of State Highway and Transportation Officials, Washington D.C., 1986.
- AASHTO, *Mechanistic-Empirical Pavement Design Guide: A Manual of Practice*. AASHTO Designation: MEPDG, Washington D.C., 2008.
- ASTM Standard A943, "Standard Specification for Spray-Formed Seamless Austenitic Stainless Steel Pipes," DOI: 10.1520/A0943_A0943M-01R09 . ASTM International, West Conshohocken, PA, 2009.
- ASTM Standard C666, "Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing," DOI: 10.1520/C0666_C0666M-03R08. ASTM International, West Conshohocken, PA, 2008.
- ASTM Standard C1260, "Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)," DOI: 10.1520/C1260-07. ASTM International, West Conshohocken, PA, 2007.
- ASTM Standard E965, "Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumetric Technique," DOI: 10.1520/E0965-96R06. ASTM International, West Conshohocken, PA, 2006.
- Baus, R.L., and Stires, R.L., *Empirical Pavement Design Guide Implementation*. Federal Highway Administration Report FHWA-SC-10-01. South Carolina Department of Transportation, Columbia, SC., 2010.
- Burnham, T., B. Izevbekhai and P. Rao Rangaraju, *The Evolution of High-Performance Concrete Pavement Design in Minnesota.*" Federal Highway Administration. *Proceedings of the International Conference on Long-Life Concrete Pavements*, Chicago, IL., 2006.
- Cable J. and Ceylan, H., *Defining the Attributes of Good In-Service Portland Cement Concrete Pavements*, DTFH61-01-X-00042 (Project 9, Federal Highway Administration, U.S. Department of Transportation) USA, 2004.
- Cedergren, H. R., *Drainage of Highway and Airfield Pavements*, John Wiley and Sons, New York, NY, 1973.
- Dempsey, B.J. and Robnett, Q.L., Influence of Precipitation Joints, and Sealing on Pavement Drainage. Transportation Research Record 705, Transportation Research Board, Washington D.C., 1979.
- FDOT, Rigid Pavement Design Manual. Florida Department of Transportation, Document no. 625-010-006-e, Tallahassee, FL, 2009.
- Fernando, E.G, Oh, J. and Ryu, D., *Phase I of MEPDG Program Implementation in Florida*. Texas Transportation Institute Report D04491/PR15281-1.College Station, TX, 2008.

- Ferragut, T., Harrington, D. and Brink, M., Long-Term Plan for Concrete Pavement Research and Technology—The Concrete Pavement Road Map, Report, Federal Highway Administration, USA, 2005.
- FHWA-HI-99-028, *Pavement Subsurface Drainage Design*. NHI Course No. 131026. Washington D.C., 1999.
- FHWA-SA-93-012, *Report on the 1992 U.S. Tour of European Concrete Highways*. Federal Highway Administration. Washington D.C., 1993.
- FHWA-SA-92-008, Demonstration Project No. 87, Drainage Pavement System Participant Notebook. Washington D.C., 1992.
- Gilles, P. and Jasienski, A., *A Second youth for and old lady of 78: The rehabilitation of the Lorraine Avenue in Brussels-Belgium*, Vol 31. FEBELCEM "Dossier Cement." Department Equipment and Transport of the Brussels Capital Region, Belgium, 2004.
- Grogan, W.P., *Performance of Free Draining Base Course at Fort Campbell*. Materials: Performance and Prevention of Deficiencies and Failure, New York, NY, pp 434-448, 1992.
- Hall, K., D. Dawood, S. Vanikar, R. Tally, Jr., T. Cackler, et al., *Long-Life Concrete Pavements in Europe and Canada*, US Department of Transportation. Report No. FHWA-PL-07-027, Federal Highway Administration, USA, 2007.
- Kannekanti, V., Harvey, J., Sensitivity Analysis of 2002 Design Guide Distress Prediction Models for Jointed Plain Concrete Pavement. Transportation Research Record 1947: 91-100. DOI: 10.3141/1947-09. Washington D.C., 2006.
- Mallela, J., Larson, G., Wyatt, T., Hall, J., Barker, W., "User's Guide for Drainage Requirements in Pavements—DRIP 2.0 Microcomputer Program," Federal Highway Administration, Washington DC, 2002.
- Moulton, L.K, and Seals, R.K., Determination of the In Situ Permeability of Base and Subbase Courses, Federal Highway Administration. Report no. FHWA-RD-79-88, Washington D.C., 1979.
- Muench, S., Pierce, L., Uhlmeyer, J. and Anderson K., "The Evolution of Long-Life Concrete Pavements in Washington State," Proceedings of the International Conference on Long-Life Concrete Pavements, Chicago, IL, October 25-27, 2006, Federal Highway Administration, USA, 2006.
- Nazarian, S., et al., *Evaluation and Guidelines for Drainable Bases*. Texas Department of Transportation, Report No. TX-96 1456-IF, TX, 1997.
- Nazef, N., *Portland Cement Concrete Pavement Specifications: State of Practice*. Florida Department of Transportation. Report No. FL/DOT/SMO/11-541. USA, 2011.

- PIARC Technical Committee, 4.3 Road Pavements, *Long Life Pavements and Success Stories*, World Road Association, France, 2009.
- Pichler, R., "Mölltal—Concrete Pavement—50 Years Under Traffic," Proceedings of the Tenth International Symposium on Concrete Roads, Brussels, Belgium, 2006.
- Raphael, J.M. "Tensile strength of concrete." ACI Journal, Vol. 81, Number 2, pp. 158-165. USA, 1984.
- Ridgeway, H.H., *Infiltration of Water Through the Pavement Surface*. Transportation Research Record 616, Transportation Research Board, Washington D.C., 1976.
- Schwartz, C.W., Final Report Volume 1: Summary of Findings and Implementation Plan. Maryland State Highway Administration MDSHA Project No. SP0077B41, Lutherville, MD, 2007.
- Tayabji, S., and S. Lim (eds.). Proceedings, International Conference on Long-Life Concrete Pavements, held in Chicago, IL, October 25-27, 2006, Federal Highway Administration, Washington D.C., 2006.
- Tia, M., Bloomquist, D., Alungbe, G.D., Richardson, D., Coefficient of Thermal Expansion of Concrete Used in Florida, Report No. FL/DOT/RMC/0409-2995, University of Florida, Gainesville, 1991.
- Tia, M., Bloomquist, D., Yang, M.C.K., Soongswang, P., Meletiou, C.A., Amornsrivilai, R., Dobson, E., Richardson, D., *Field and Laboratory Study of Modulus of Rupture and Permeability of Structural Concretes in Florida*, Report No. FL/DOT/SMO/89/361, University of Florida, Gainesville, 1989.
- Wall W. and Schmitt R., "Central Florida Concrete Pavement Tour for the Transportation Research Board Mid-Year Committee Meeting For the Committee on Portland Cement Concrete Pavement Construction.". Florida Department of Transportation, District Five Materials and Research. Orlando, FL, 2007
- Winkelman, T.J., "Design and Construction of Extended Life Concrete Pavements in Illinois," Proceedings of the International Conference on Long-Life Concrete Pavements, Chicago, IL, October 25-27, 2006, Federal Highway Administration, USA, 2006.
- Won, M., Kim, D.H., Cho, Y.H. and Medina-Chavez, C., "Long-Term Performance of Continuously Reinforced Concrete Pavement in Texas," *Proceedings of the International Conference on Long-Life Concrete Pavements*, Chicago, IL, October 25-27, 2006, Federal Highway Administration, USA, 2006.
- Wu, C. H., and Larsen, T. J., "Analysis of structural response of concrete pavements under critical thermal loading conditions." Proc., 5th Int. Conf. on Concrete Pavement Design and Rehabilitation, Purdue University, Lafayette, Ind., 1, 317–340. USA, 1993.


APPENDIX A TYPE I COST ESTIMATE SAMPLE CALCULATION (12" PCC)

Main Pavement – PCC = lenght * Lanes * slab width = 10 miles $\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right)$ * 4 Lanes * $13ft\left(\frac{1 \text{ yd}}{3 \text{ ft}}\right)$ = 305,067 yd²

Main Pavement – Dowel Bar Information

Dowel Information:

- Diameter: 1.5"
- Spacing: 12" c/c
- Length: 18"

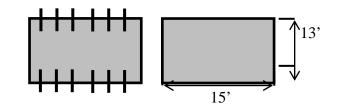
No. of Slabs:

$$= 10 \text{ miles}\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right) = 52,800 \text{ ft}$$
$$= \frac{52,800 \text{ ft}}{15 \text{ ft}/_{slab}} = 3520 \text{ slabs}$$

 $\frac{\text{No. of Dowels:}}{= 3520 \text{ slabs } * \left(\frac{13 \text{ Dowels}}{\text{slab}}\right) = 45,760 \text{ Dowels/lane}$

Dowel Length:

$$= 45,760 \text{ dowels} * 4 \text{ lanes} * 18 \text{ inches} * \left(\frac{1 \text{ ft}}{12 \text{ inches}}\right)$$
$$= 247,560 \text{ ft}$$


Main Pavement – Tie Bar Information

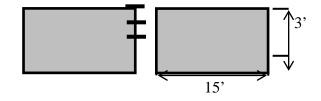
Tie bar Information:

- Diameter: 1.5"
- Spacing: 24" c/c
- Length: 25"

No. of Slabs:

$$= 10 \text{ miles} \left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right) = 52,800 \text{ ft}$$
$$= \frac{52,800 \text{ ft}}{15 \text{ ft}/_{slab}} = 3520 \text{ slabs}$$

<u>No. of Dowels:</u> = 3520 slabs * $\left(\frac{24 \text{ bars}}{\text{slab}}\right)$ = 84,480 bars


Shoulder Pavement – PCC

= lenght * Lanes * shoulder width = 10 miles $\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right)$ * 4 shoulders * $3ft\left(\frac{1 \text{ yd}}{3 \text{ ft}}\right)$ = 70,400 yd²

Shoulder Pavement – Dowel Bar

Dowel Information:

- Diameter: 1.5"
- Spacing: 12" c/c
- Length: 18"

No. of Slabs:

$$= 10 \text{ miles}\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right) = 52,800 \text{ ft}$$
$$= \frac{52,800 \text{ ft}}{15 \text{ ft/}_{slab}} = 3520 \text{ slabs}$$

<u>No. of Dowels:</u> = 3520 slabs * $\left(\frac{3 \text{ Dowels}}{\text{slab}}\right)$ = 10,560 Dowels/shoulder

Dowel Length:

= 10,560 dowels * 4 shoulders * 18 inches * $\left(\frac{1 ft}{12 inches}\right)$ = 63,360 ft

4 inch Permeable Base = slab lenght * Lanes * slab width = 10 miles $\left(\frac{1760 \ yd}{1 \ mile}\right)$ * 4 Lanes * $13ft\left(\frac{1 \ yd}{3 \ ft}\right)$ = 305,066.67 yd^2

1 inch Structural AC Inter-Layer

General Information:		Sp. Gra
• Air Voids:	7%	
	60/	1.0.4

- Asphalt Content: 6% 1.04
- Aggregate: 2.50
- Density of Water: 62.4 lb/ft^3

$$MTD = \frac{100}{\left(\frac{6}{1.04}\right) + \left(\frac{94}{2.5}\right)} = 2.31 \ g/cc$$

$$Density = MTD * (1 - 0.07)$$

= 2.14 * 62.4 = 133.81 ^{lb}/_{ft³}
= 133.81 $\frac{lb}{ft^3} * \left(\frac{1 TN}{2000 \ lbs}\right) = 3.61 \frac{TN}{yd^3}$

$$\frac{\text{Amount of asphalt necessary:}}{=\frac{3.61 \text{ TN}}{\text{yd}^8} * 10 \text{ miles} \left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right) * 4 \text{ lanes } * 1 \text{ inch} \left(\frac{1 \text{ yd}}{36 \text{ inches}}\right) * 13 \text{ ft} \left(\frac{1 \text{ yd}}{3 \text{ ft}}\right) = 30,613 \text{ TN}$$

Prime Coat

General Information:

• Approximated use by Asphalt Institute: $\frac{0.5 \ gal}{vd^2}$

$$= 10 \text{ miles}\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right) * [13ft(2 \text{ lanes}) + 3ft(2 \text{ shoulders})]$$
$$= 187,733 \text{ yd}^2 * \left(\frac{0.5 \text{ gal}}{1 \text{ yd}^2}\right) * 2 \text{ directions}$$
$$= 187,733 \text{ gallons}$$

Type B Stabilization = slab lenght * Lanes * slab width = 10 miles $\left(\frac{1760 \text{ yd}}{1 \text{ mile}}\right)$ * 4 Lanes * $13ft\left(\frac{1 \text{ yd}}{3 \text{ ft}}\right)$ = 305,066.67 yd²

APPENDIX B FDOT GIS AADTT DATA (TOP 300)

No.	DIST	COSITE	ROADWAY	DESC_FRM	DESC_TO	TruckAADT
		86280				
1	4	7	86095000	Bridge No-860535	US 1/SR 5 SB	22110
		93219				
2	4	2	93220000	Bridge No-930189	Bridge No-930499	21625
2		86249	0.0070000			20460
3	4	3	86070000	86095000/EB-I595	SR 736/DAVIE BLVD	20468
л	5	92032 1	92130000	RAMP 92473001	N/A	20193
4	5	92032	92130000	RAIVIP 92475001	N/A	20195
5	5	1	92130000	Bridge No-920094	RAMP 92473001	20193
5	5	86245	52150000	Bridge No 520054	10/001 52475001	20133
6	4	8	86070000	Bridge No-860554	86095000/EB-I595	18972
		86249			SR 842/BROWARD	
7	4	8	86070000	SR 736/DAVIE BLVD	BLVD	18088
		86245				
8	4	4	86070000	Bridge No-860530	Bridge No-860576	17952
		86250				
9	4	0	86070000	SR 838/SUNRISE BLVD	Bridge No-860117	17816
		86245				
10	4	6	86070000	Bridge No-860579	Bridge No-860554	17408
		86239				
11	4	4	86070000	Bridge No-860531	Bridge No-860530	17340
12	4	86245	86070000	Dridge No. 900570	Dridge No. 800570	17204
12	4	5 86250	86070000	Bridge No-860576	Bridge No-860579	17204
13	4	1	86070000	Bridge No-860117	Bridge No-860130	17160
15	4	86250	80070000	Bridge NO-800117	Blidge NO-800130	1/100
14	4	7	86070000	Bridge No-860124	PALM BCH. CO. LN.	16767
	•	93219	00070000			10,07
15	4	9	93220000	N/A	10TH AVE N	16384
		86248				
16	4	7	86070000	DADE CO. LN.	Bridge No-860529	15640
		87057				
17	6	2	87260000	NW 58 ST	Bridge No-870964	15561
		36043				
18	5	8	36210000	Bridge No-360022	Bridge No-360043	15535
	_	10008				
19	7	7	10190000	Bridge No-100599	Bridge No-100601	15424
20	-	10201	10100000	Dridge No. 400007	Dridge No 400440	15240
20	7	6	10190000	Bridge No-100697	Bridge No-100110	15240
21	7	10008 6	10190000	Bridge No-100601	N/A	15232

		72236				
22	2	1	72280000	Bridge No-720334	SR 5	15191
		86250				
23	4	2	86070000	Bridge No-860130	Bridge No-860239	15040
		86249		SR 842/BROWARD		
24	4	9	86070000	BLVD	SR 838/SUNRISE BLVD	14787
	_	36043				
25	5	9	36210000	Bridge No-360018	Bridge No-360022	14783
26	8	97202 0	75470000	N/A	RAMP 161 SB ON	14496
20	0	36031	75470000	N/A	RAIVIP 101 3D UN	14490
27	5	7	36210000	Bridge No-360001	Bridge No-360063	14419
27		93219	30210000	511056 110 500001		11115
28	4	7	93220000	HYPOLUXO RD	CR 812/LANTANA RD	14368
		16010		HILLSBOROUGH CO		
29	1	3	16320000	LINE	ON RAMP TO I-4	14108
		93219				
30	4	1	93220000	N/A	Bridge No-930189	14097
		10011				
31	7	2	10190000	N/A	Bridge No-100607	14065
22	_	10535	10100000			1 1000
32	7	2	10190000	Bridge No-100137	10320000 MAINLINE	14000
33	7	10560 9	10190000	N/A	Bridge No-100697	14000
- 33	/	10560	10190000	N/A	Bluge NO-100037	14000
34	7	9	10190000	Bridge No-100123	N/A	14000
		87057		211080 110 100110		
35	6	3	87260000	Bridge No-870964	Bridge No-870975	13908
		10201				
36	7	5	10190000	Bridge No-100110	Bridge No-100137	13800
		87252				
37	6	5	87260000	Bridge No-870778	Bridge No-870982	13680
		87057	0700000			40674
38	6	0	87260000	N/A	Bridge No-870778	13671
39	7	10201 8	10190000	Bridge No-100120	Bridge No-100123	12640
22	/	8 77026	10190000	DI 1086 100-100120	DI 1022 110-100123	13640
40	5	8	77160000	N/A	N/A	13625
	5	77026	,,100000			10020
41	5	8	77160000	LAKE MARY BLVD	N/A	13625
		87055				
42	6	3	87260000	Bridge No-870975	Bridge No-870757	13623
		77026				
43	5	7	77160000	SR 436	Bridge No-770022	13550
		72086				
44	2	0	72280000	Bridge No-720219	Bridge No-720220	13346
	۷.	5	12200000	Druge 10-720213	Druge 10-720220	10040

		72235				
45	2	3	72280000	Bridge No-720220	Bridge No-720331	13205
		86033				
46	4	1	86070000	Bridge No-860529	Bridge No-860531	13124
		87057				
47	6	1	87260000	Bridge No-870982	NW 58 ST	13110
	_	93219				
48	4	8	93220000	CR 812/LANTANA RD	N/A	13088
40	-	18018 8	26210000			12020
49	5	8 18018	36210000	SUMTER COUNTY LINE	Bridge No-360001	13028
50	5	8	18130000	Bridge No-180070	MARION COUNTY LINE	13028
50	5	75019	10130000	Bridge No 100070		13020
51	5	6	75280000	Bridge No-750014	SR 408	12921
		75019				
52	5	6	75280000	N/A	Bridge No-750014	12921
		93219			GATEWAY BLVD/22	
53	4	6	93220000	N/A	AVE	12800
		36044				
54	5	0	36210000	Bridge No-360063	Bridge No-360018	12773
	_	14015	4 4 4 4 9 9 9 9			10765
55	7	6	14140000	NB 14075000	RAMP 018	12765
56	4	93220 1	93220000	N/A	SR 80/SOUTHERN BLVD	12704
30	4	86250	93220000	N/A	SK 60/300THERN BLVD	12704
57	4	5	86070000	Bridge No-860120	Bridge No-860121	12702
	· ·	10535				
58	7	3	10190000	N/A	N/A	12695
		16100				
59	1	5	16320000	ON RAMP TO I-4	SR 546	12483
		93220				
60	4	0	93220000	10TH AVE N	N/A	12448
	-	26048				40.405
61	2	8	26260000	Bridge No-260054	Bridge No-260057	12420
62	1	16011	16320000	SR 25/US 27	OSCEOLA CO LINE	12220
02	1	1 16011	10320000	JN 23/03 2/	USCEULA CU LINE	12320
63	1	1	92130000	POLK COUNTY LINE	Bridge No-920094	12320
	-	93219	52150000		511456 110 520054	12520
64	4	3	93220000	Bridge No-930499	Bridge No-930503	12320
		97190		<u> </u>	<u> </u>	-
65	8	0	86470000	MIAMI-DADE CO LINE	Bridge No-860407	12204
		10202				
66	7	3	10190000	Bridge No-100586	Bridge No-100589	12144
		72389				
67	2	6	72001000	Bridge No-720242	Bridge No-720245	12038
07	2	0	/2001000	Druge 10-720242	Druge 10-720243	12030

		75305				
68	5	6	75280000	N/A	N/A	12012
		75305				
69	5	6	75280000	Bridge No-750074	N/A	12012
		72089				
70	2	5	72001000	Bridge No-720241	Bridge No-720242	11984
74	2	26345	26260000			11070
71	2	5 16010	26260000	Bridge No-260057	SR 222/NW 39TH AVE	11970
72	1	8	16320000	N/A	SR 25/US 27	11854
72	⊥	10008	10520000	N/ A	517 25/ 05 27	11054
73	7	4	10190000	Bridge No-100607	HILLS/POLK CO LINE	11827
		10202				
74	7	6	10190000	Bridge No-100658	Bridge No-100672	11818
		87056				
75	6	9	87260000	Bridge No-870268	N/A	11799
		72502				
76	2	0	72270000	RAMP 380	(72270436)	11736
		72086				
77	2	1	72280000	N/A	Bridge No-720219	11685
78	2	72386 3	72280000	Dridge No. 720229	NI/A	11685
70	Ζ	92031	72280000	Bridge No-720328	N/A	11005
79	5	5	92130000	N/A	N/A	11655
/5	5	18018	52150000			11000
80	5	6	18130000	N/A	Bridge No-180070	11623
		79049		-		
81	5	4	79002000	Bridge No-790071	LPGA BLVD	11622
		16011				
82	1	7	16320000	SR 546	SR 539	11600
		16011				
83	1	2	16320000	N/A	N/A	11600
01	7	10202	10100000		Dridge No. 100050	11515
84	7	8 72216	10190000	RAMP 10320182	Bridge No-100658	11515
85	2	3	72020000	Bridge No-720177	Bridge No-720178	11495
0.5		93217	, 2020000	DINGE NO / 201//	211080 110 / 20170	1175
86	4	2	93220000	Bridge No-930530	N/A	11488
		72090				
87	2	0	72001000	Bridge No-720263	Bridge No-720259	11449
		72215				
88	2	6	72020000	Bridge No-720301	Bridge No-720174	11448
		87057				
89	6	4	87260000	Bridge No-870757	Bridge No-870766	11400
		72089				
90	2	4	72001000	N/A	Bridge No-720241	11396
50	2	<u>г</u>	,2001000	11/1	511450 10 / 20271	11350

		77026				
91	5	6	77160000	Bridge No-770084	VOLUSIA COUNTY LINE	11388
		16011				
92	1	6	16320000	SR 539	Bridge No-160310	11340
		10009				
93	7	1	10190000	US 301 / SR 43	N/A	11337
0.4	4	16011	10220000		N1 / A	11210
94	1	5 93222	16320000	Bridge No-160310 GATEWAY BLVD/22	N/A	11319
95	4	2	93220000	AVE	HYPOLUXO RD	11296
		10202	33220000	, L		11250
96	7	0	10190000	Bridge No-100115	Bridge No-100117	11280
		79048		SEMINOLE COUNTY	Ŭ	
97	5	4	79110000	LINE	N/A	11275
		86016				
98	4	3	86070000	Bridge No-860121	SW 10 ST/SR 869	11222
	_	79053				
99	5	4	79002000	LPGA BLVD	N/A	11172
100	2	26045 6	26260000	Pridge No 260062	Bridge No. 2600E4	11160
100	Ζ	87056	20200000	Bridge No-260063	Bridge No-260054	11160
101	6	7	87260000	Bridge No-870760	Bridge No-870112	11144
		93019	0/20000	2.1.0,00 110 07 07 00		
102	4	8	93220000	Bridge No-930503	N/A	11104
		72215				
103	2	9	72020000	Bridge No-720174	Bridge No-720177	11068
		87057				
104	6	5	87260000	Bridge No-870766	N/A	11058
105	c	87906	87260000	Dridge No. 970469	NI/A	11050
105	6	0 13004	87260000	Bridge No-870468	N/A	11050
106	1	0	13075000	Bridge No-130067	Bridge No-130084	11040
		93017		2		
107	4	4	93220000	N/A	Bridge No-930530	10969
		10008				
108	7	8	10190000	Bridge No-100614	Bridge No-100599	10824
		72088		<u>.</u>		
109	2	7	72290000	N/A	Bridge No-720234	10824
110	л	93220	02220000	Dridge No 020497	NI / A	10010
110	4	3 29025	93220000	Bridge No-930487	N/A	10816
111	2	29025	26260000	N/A	COLUMBIA CO LINE	10800
		29025	20200000	14/1		10000
112	2	7	29180000	ALACHUA CO LINE	Bridge No-290053	10800
					-	
142		16011	10220000	NI / A		10700
113	1	4	16320000	N/A	Bridge No-160181	10780

		77028				
114	5	6	77160000	N/A	Bridge No-770084	10773
		13004				
115	1	1	13075000	Bridge No-130084	Bridge No-130103	10770
446	•	97201	75470000			40704
116	8	5 10014	75470000	Bridge No-750626	Bridge No-750610	10721
117	7	4	10075000	Bridge No-100363	GIBSONTON DR	10679
	,	97062	10075000	511056 110 100505	GIBSONTON DI	10075
118	8	5	75471000	Bridge No-750099	GORE WITH 75002000	10639
		26990				
119	2	4	26260000	Bridge No-260061	Bridge No-260063	10637
120	-	10202	10100000			10000
120	7	4 75058	10190000	Bridge No-100672	Bridge No-100586	10600
121	5	6	75008000	N/A	Bridge No-750123	10575
	0	29025		.,,		
122	2	6	29180000	Bridge No-290053	Bridge No-290059	10560
		78025				
123	2	9	78080000	Bridge No-780116	DUVAL CO LINE	10560
124	1	17004	17075000	Dridge No. 170002		10512
124	1	7 75300	17075000	Bridge No-170083	MANATEE CO LINE	10512
125	5	7	75280000	N/A	SR 91	10488
	-	29032		,		
126	2	0	29180000	Bridge No-290061	N/A	10409
		72990				
127	2	5	72280000	ST JOHNS CO LINE	Bridge No-720636	10408
128	5	70036 6	70225000	N END OF BR 700127	Bridge No-700054	10350
120	5	10015	70223000		Bridge No 700034	10550
129	7	1	10075000	Bridge No-100393	Bridge No-100403	10328
		87057				
130	6	9	87260000	Bridge No-870239	Bridge No-870104	10316
124	C	87056	0720000			10200
131	6	6 16011	87260000	Bridge No-870126	Bridge No-870760	10289
132	1	3	16320000	Bridge No-160181	N/A	10268
	<u>+</u>	72551		2		
133	2	4	72020000	Bridge No-720178	Bridge No-720182	10165
		72086				
134	2	4	72280000	Bridge No-720636	Bridge No-720328	10165
135	4	86250 4	86070000	Bridge No-860231	Bridge No-860120	10164
122	4	4	80070000	DITUSE 110-000231	DIUge 110-000120	10104
		97200				
136	8	4	75470000	Bridge No-750404	RAMP 110 SB OFF	10117

		97202				
137	8	5	75470000	N/A	SR 429 SB	10117
		97202				
138	8	5	75470000	RAMP 161 SB ON	N/A	10117
		97201				
139	8	4	75470000	OSCEOLA COUNTY LINE	Bridge No-750626	10117
		86250				
140	4	3	86070000	Bridge No-860239	Bridge No-860231	10105
1 1 1	7	10008 9	1010000	NI/A	Dridge No. 100614	10000
141	/	9 75308	10190000	N/A	Bridge No-100614	10000
142	5	75308 0	77160000	ORANGE COUNTY LINE	SR 436	9986
142	5	75308	77100000		SEMINOLE COUNTY	3380
143	5	0	75280000	N/A	LINE	9986
145	5	97050	75200000			5500
144	8	5,650	75470000	Bridge No-750610	N/A	9966
		13003				
145	1	9	13075000	BEGIN I-275 NB	Bridge No-130067	9947
		97061				
146	8	0	75471000	Bridge No-750089	Bridge No-750091	9945
		92031				
147	5	6	92130000	N/A	N/A	9943
		16036				
148	1	3	16320000	N/A	N/A	9927
		26045			_	
149	2	4	26260000	SR 222/NW 39TH AVE	N/A	9900
	_	75304				
150	5	4	75280000	Bridge No-750064	Bridge No-750066	9900
1 - 1	-	75304	75280000		NI / A	0000
151	5	4 93217	75280000	Bridge No-750066	N/A	9900
152	4	7	93220000	N/A	N/A	9824
152		, 13004	55220000		N/A	5024
153	1	2	13075000	Bridge No-130103	RAMP#13175310	9779
		74013				
154	2	2	74160000	Bridge No-740940	GEORGIA STATE LINE	9749
		93219		-		
155	4	5	93220000	N/A	N/A	9728
		87056				
156	6	8	87260000	Bridge No-870112	Bridge No-870268	9719
		10014			SR 618 X-TOWN	
157	7	7	10075000	Bridge No-100485	REVERS	9680
		97226				0.0
158	8	6	87471000	Bridge No-870198	Bridge No-870407	9676
		97053				
159	8	3	75471000	END BRIDGE 750180	Bridge No-750088	9647
	-	-				2017

		70040				
160	5	1	70225000	N/A	N/A	9630
		70040				
161	5	1	70225000	ST JOHN RD	N/A	9630
4.62	_	73029	70004000			0.620
162	5	2	73001000	N/A	N/A	9630
163	7	10015 3	10075000	Bridge No-100420	Bridge No-100367	9602
105	/	36043	10075000	Bridge NO-100420	Blidge NO-100307	9002
164	5	7	36210000	Bridge No-360043	Bridge No-360037	9579
		72083			<u> </u>	
165	2	2	72270000	N/A	RAMP 380	9454
		86280				
166	4	8	86095000	Bridge No-860378	SR 91/TURNPIKE NB	9453
	_	97062				
167	8	0	75471000	Bridge No-750088	Bridge No-750089	9436
160	-	70036 8	70225000	Dridge No. 700054	NI / A	0260
168	5	× 75058	70225000	Bridge No-700054	N/A	9360
169	5	4	75008000	N/A	N/A	9353
105		12005	/3000000			5555
170	1	9	12075000	Bridge No-120122	Bridge No-120090	9313
		75053				
171	5	0	75008000	N/A	N/A	9306
		97190				
172	8	4	86470000	Bridge No-860432	Bridge No-860533	9296
170	7	10014	10075000		Duides No. 100405	0202
173	7	6 93218	10075000	GIBSONTON DR	Bridge No-100485	9282
174	4	95216 7	93220000	N/A	N/A	9280
1/7		, 10992	55220000			5200
175	7	6	10075000	Bridge No-100495	N/A	9253
		29032				
176	2	4	29180000	N/A	SUWANNEE CO LINE	9240
		29032				
177	2	4	37130000	COLUMBIA CO LINE	N/A	9240
170	-	75306	75200000	N1 / A		0240
178	5	4	75280000	N/A	Bridge No-750256	9240
179	2	72090 2	72001000	Bridge No-720256	Bridge No-720412	9238
1,2	∠	72992	,2001000	5105010720250	DINGC 110 / 20112	5250
180	2	3	72290000	Bridge No-720237	NASSAU CO LINE	9194
		72992		~		
181	2	3	74160000	DUVAL CO LINE	Bridge No-740034	9194
		70040				
182	5	79049 5	79002000	N/A	Bridge No-790082	9188
102	J	J	15002000	N/A	BIUGE NU-750002	3100

		79049				
183	5	5	79002000	N/A	N/A	9188
		72212		,	,	
184	2	1	72020000	N/A	Bridge No-720301	9179
		75303				
185	5	4	75280000	SR 408	Bridge No-750064	9174
		14019				
186	7	0	14140000	RAMP 018	RAMP 001	9152
		10015		_		
187	7	0	10075000	N/A	Bridge No-100393	9146
	_	08003				
188	7	7	08150000	Bridge No-080021	SUMTER CO LINE	9135
100	7	10015	4 4075 000	HILLSBOROUGH	CD 1 275	0120
189	7	4	14075000	COUNTY	SB I-275	9120
190	7	10015 4	10075000	Bridge No-100367	PASCO CO LINE	9120
190	/	4 29025	10012000	DINGE NO-100307		5120
191	2	29025	29180000	Bridge No-290059	Bridge No-290061	9120
	-	13004	20100000	5.1000 200000	210001	5120
192	1	3	13075000	RAMP#13175302	N/A	9120
		36043			,	
193	5	6	26260000	MARION CO LINE	Bridge No-260061	9021
		36043			ALACHUA COUNTY	
194	5	6	36210000	Bridge No-360037	LINE	9021
		86250				
195	4	6	86070000	SW 10 ST/SR 869	Bridge No-860124	9020
		15540				
196	7	5	15190000	N/A	4TH ST N	8936
	_	79049				
197	5	6	79002000	Bridge No-790082	FLAGLER COUNTY LINE	8894
100	-	79049	72001000		NI / A	0004
198	5	6	73001000	VOLUSIA COUNTY LINE	N/A	8894
199	2	72089 8	72001000	Bridge No-720248	Bridge No-720253	8881
100	۷.	75013	72001000	Diluge 140-720240	Druge 10-720233	0001
200	5	0	75280000	N/A	N/A	8876
		15010		/	,	•
201	7	6	15190000	54TH AVE N	Bridge No-150100	8873
		78005			, , , , , , , , , , , , , , , , , , ,	
202	2	5	78080000	INTL GOLF PKWY	Bridge No-780116	8820
		94190				
203	4	1	94001000	MARTIN CO LINE	ST LUCIE W BLVD	8816
		72017				
204	2	1	72280000	Bridge No-720332	Bridge No-720334	8782
		75305				
205	5	1	75280000	N/A	Bridge No-750074	8778
205	5		/ 5200000		Bridge 10 / 500/4	0770

		93220				
206	4	2	93220000	SR 80/SOUTHERN BLVD	Bridge No-930487	8768
200	•	10560	33220000			0,00
207	7	1	10075000	MANATEE CO LINE	Bridge No-100346	8758
		97200				
208	8	3	75470000	SR 429 SB	Bridge No-750404	8758
		79100				
209	5	3	79110000	N/A	SR 472	8745
		97225				
210	8	0	87471000	N/A	N/A	8732
		75064				
211	5	8	75280000	N/A	N/A	8712
		10014		SR 618 X-TOWN		
212	7	8	10075000	REVERS	Bridge No-100495	8694
		87211				
213	6	4	87260000	ON RAMP 87260514	OFF RAMP 518	8693
	_	75302				
214	5	7	75280000	Bridge No-750160	N/A	8679
245	_	75302	75200000			0.070
215	5	7	75280000	N/A	Bridge No-750160	8679
210	2	72010	72270000	Dridge No. 720100	NI / A	0.070
216	2	9	72270000	Bridge No-720199	N/A	8678
217	4	86200 1	86075000	N/A	PINES BLVD/ SR 820	8672
217	4	97053	80075000	N/A	PINES BLVD/ SK 020	0072
218	8	4	75471000	Bridge No-750093	Bridge No-750099	8494
210	0	77034	75471000	bridge NO-750055	Blidge NO-750055	0434
219	5	3	77160000	N/A	LAKE MARY BLVD	8484
215	5	77034	,,100000			0101
220	5	3	77160000	Bridge No-770022	N/A	8484
	-	97191			,	
221	8	2	86470000	N/A	COMMERCIAL BLVD	8466
		97190				
222	8	8	86470000	Bridge No-860533	N/A	8466
		86280				
223	4	6	86095000	SR 91/TURNPIKE NB	Bridge No-860535	8464
		55200			US27/SR63/MONROE	
224	3	3	55320000	Bridge No-550074	ST	8439
		87040				
225	6	5	87260000	Bridge No-870253	Bridge No-870051	8408
		74015				
226	2	8	74160000	Bridge No-740034	Bridge No-740940	8408
	c.	87525				0000
227	6	2	87090000	NW 74 ST	W 9 ST/NW 62 ST	8390
		17022				
228	1	5	17075000	Bridge No-170085	Bridge No-170145	8343

		10014				
229	7	3	10075000	Bridge No-100346	Bridge No-100363	8320
		72551		Ŭ	0	
230	2	5	72020000	Bridge No-720306	N/A	8313
		75053				
231	5	5	75280000	Bridge No-750367	N/A	8303
	-	97059				
232	8	8	75471000	Bridge No-750091	Bridge No-750093	8296
233	7	10015 2	10075000	Bridge No-100403	Bridge No-100420	8295
233	/	17004	10075000	Bridge 100-100403	RP 17005102 VEN	8295
234	1	3	17075000	LAUREL ROAD	CONN	8289
	_	14008				
235	7	6	14140000	RAMP 001	RAMP 007	8262
		86280				
236	4	4	86095000	Bridge No-860357	Bridge No-860391	8249
		18992				
237	5	0	18130000	Bridge No-180037	N/A	8243
222	-	72551				
238	2	1	72020000	SR 5 SB 72070-000	TO PARK ST	8228
239	7	10010 4	10190000	Bridge No-100589	US 301 / SR 43	8190
235	/	75307	10190000	Blidge NO-100383	05 501 / 51 45	8190
240	5	4	75280000	N/A	N/A	8184
_	_	75307		,	,	
241	5	4	75280000	N/A	N/A	8184
		97225				
242	8	4	87471000	Bridge No-870194	Bridge No-870198	8142
		27313				
243	2	4	27090000	Bridge No-270047	NASSAU CO LINE	8120
244	2	27313	72270000		Dridge No. 720100	8120
244	2	4 27313	72270000	NASSAU COUNTY LINE	Bridge No-720199	8120
245	2	4	74170000	BAKER CO LINE	DUVAL CO LINE	8120
		17507	0000			
246	1	5	17075000	Bridge No-170096	LAUREL ROAD	8118
		87057				
247	6	6	87260000	N/A	Bridge No-870468	8094
		87057				
248	6	8	87260000	Bridge No-870234	Bridge No-870239	8094
240	2	48200	4020000	NI / A	N1 / A	8063
249	3	6 12005	48260000	N/A	N/A	8062
250	1	12005	12075000	Bridge No-120120	Bridge No-120122	8037
230	<u> </u>		120,3000	211060 110 120120	211020110 120122	
		93021				
251	4	7	93220000	N/A	Bridge No-930371	8036

		10200				
252	7	9	10320000	Bridge No-100062	Bridge No-100203	8007
		12005				
253	1	7	12075000	Bridge No-120107	Bridge No-120120	7998
254	-	18035 8	18120000	Dridge No. 190022	Dridge No. 190027	7096
254	5	8 75306	18130000	Bridge No-180033	Bridge No-180037	7986
255	5	9	75280000	Bridge No-750256	N/A	7953
		87057	/0100000	2		
256	6	7	87260000	Bridge No-870051	Bridge No-870234	7952
		72991				
257	2	4	72001000	Bridge No-720412	Bridge No-720396	7946
250	_	92706	02520000			70.42
258	5	7 14009	92530000	REAVES RD	US 17 / US 92 / OBT	7942
259	7	14009 4	14140000	RAMP 009	HERNANDO CO LINE	7935
235	,	14009	14140000			7555
260	7	4	08150000	PASCO CO LINE	Bridge No-080021	7935
		78025				
261	2	8	78080000	Bridge No-780057	INTL GOLF PKWY	7920
	_	89221				
262	4	0	89095000	Bridge No-890117	Bridge No-890129	7914
263	1	12006 0	12075000	Bridge No-120090	Bridge No-120093	7888
205	L	79048	12073000	Bridge NO-120090	Blidge NO-120095	7000
264	5	6	79110000	SR 44	N/A	7884
		86200				
265	4	5	86075000	N/A	N/A	7868
		87055				
266	6	4	87260000	ON RAMP 87260337	Bridge No-870253	7866
267	0	97227	97471000	NI / A	NI/A	7047
267	8	0 17004	87471000	N/A	N/A	7847
268	1	2	17075000	Bridge No-170090	Bridge No-170096	7839
		86018		- 0		
269	4	6	86095000	Bridge No-860391	Bridge No-860378	7826
		87058				
270	6	1	87260000	Bridge No-870104	ON RAMP 87260514	7809
274	4	86200	00075000	N1 / A		7000
271	4	3 10200	86075000	N/A	GRIFFIN RD	7803
272	7	8	10320000	Bridge No-100203	Bridge No-100210	7775
2,2	,	89221	10020000	511486 110 100203	51056110 100210	,,,,,
273	4	2	89095000	Bridge No-890129	Bridge No-890121	7770
274	7	14009	1 4 1 4 0 0 0 0			7700
274	7	3	14140000	RAMP 007	RAMP 009	7763

		79048				
275	5	5	79110000	SR 472	N/A	7755
		97190				
276	8	2	86470000	Bridge No-860407	Bridge No-860432	7728
		13006				
277	1	3	13075000	RAMP#13175310	RAMP#13175302	7719
		72088		72290239 TO DUNN		
278	2	6	72290000	AVE	N/A	7688
	_	87013				
279	6	7	87260000	N/A	ON RAMP 87260337	7682
		72217				
280	2	0	72020000	Bridge No-720182	Bridge No-720306	7656
204	0	97191	06470000			7626
281	8	6	86470000	COMMERCIAL BLVD	ATLANTIC BLVD/SR 814	7636
202	7	10200	10220000	Dridge No. 100214	Dridge No. 100210	7622
282	7	6 75301	10320000	Bridge No-100214	Bridge No-100219	7632
283	5	75301 8	75280000	N/A	N/A	7623
205	5	18020	73280000	HERNANDO COUNTY	N/A	7025
284	5	8	18130000	LINE	N/A	7585
204	J	86026	18130000		SR 858/HALLANDALE	7385
285	4	8	86010000	MIAMI DADE CO LN	BL	7566
205	-	15006	00010000		52	/500
286	7	2	15190000	4TH ST N	END BRIDGE 150107	7560
	· ·	72088				
287	2	8	72290000	Bridge No-720234	Bridge No-720237	7503
		32011				
288	2	2	32100000	N/A	GEORGIA STATE LINE	7430
		72235				
289	2	5	72280000	Bridge No-720331	Bridge No-720332	7412
		72224				
290	2	1	72020000	N/A	SB ON FR CLARK (408)	7315
		18019				
291	5	4	18130000	N/A	Bridge No-180033	7289
		87253				
292	6	7	87090000	NW 95 ST/JOHN HILL R	ON RAMP 87260403	7260
		75306				
293	5	1	75280000	N/A	N/A	7224
	_	10601				
294	7	1	10030000	SR 583 / N 56TH ST	N/A	7210
20-	-	79990	70440000			
295	5	6	79110000	N/A	N/A	7209
200	Λ	86280	96005000	Dridge No. 000250	Dridge No. 000057	7470
296	4	3	86095000	Bridge No-860359	Bridge No-860357	7176
		32023				
297	2	6	32100000	SUWANNEE CO LINE	US 129/SR 51	7168

		32023				
298	2	6	37130000	N/A	HAMILTON CO LINE	7168
		97193		NORTH END BR		
299	8	0	93470000	#860184	Bridge No-930416	7138
		97193				
300	8	0	86470000	Bridge No-860506	PALM BEACH CO LINE	7138

APPENDIX C SAMPLE INPUT PARAMETERS FOR ANALYSIS OF TYPE I-A DESIGN USING MEPDG

StructureDesign Features	
General Design Features	
Pavement Cross-Slope	4%
Crack Infiltration Rate (ft ³ /day/ft):	2.06
Joint Design	
Joint spacing (ft):	15
Dowel diameter (in):	1.5
Dowel bar spacing (in):	12
Edge Support	Tied PCC shoulder, Widened slab
Long-term LTE(%):	50
Widened Slab (ft):	13
StructureLayers	
Layer 1 JPCP	
General Properties	
PCC material	JPCP
Layer thickness (in):	13
Unit weight (pcf):	145
Poisson's ratio	0.2
Thermal Properties	
Coefficient of thermal expansion (per F° x 10- 6):	5.68
Thermal conductivity (BTU/hr-ft-F°) :	1.25
Heat capacity (BTU/lb-F°):	0.28
Mix Properties	
Cement type:	Type II
Cementitious material content (lb/yd^3):	470
Water/cement ratio:	0.4
Aggregate type:	Brooksville Limestone
Reversible shrinkage (% of ultimate shrinkage):	50
Time to develop 50% of ultimate shrinkage (days):	35
Strength Properties	
28-day PCC modulus of rupture (psi):	700

Layer 2 Permeable aggregate		
Unbound Material:	Permeable aggregate	
Thickness(in):	4	
Strength Properties		
Poisson's ratio:	0.35	
Coefficient of lateral pressure,Ko:	0.5	
Modulus (input) (psi):	40000	
Drainage Properties		
Permeability (ft/day):	900	
Time-to-drain 50% saturated layer (hrs):	3.76	
General Parameters		
Maximum dry unit weight (pcf):	127.2	
Specific Gravity	2.7	
Layer 3 Asphalt Concrete		
Material Type:	Asphalt Concrete	
Thickness(in):	2	
General Properties		
PG Grade(C°):	76-22	
Effective binder content (%):	11.6	
Air Voids (%):	7	
Unit weight (pcf):	150	
Poisson's ratio:	0.35	
Layer 4 Type B (LBR 40)		
Unbound Material:	Туре	
Thickness(in):	B 12	
Strength Properties		
Poisson's ratio:	0.35	
Coefficient of lateral pressure,Ko:	0.5	
CBR:	32	
Modulus (input) (psi):	23479	
General Parameters		
Maximum dry unit weight (pcf):	120	
Specific Gravity	2.7	

Layer 5 -- Subbase

Unbound Material: Thickness(in):	A-3 Semi-infinite	
Strength Properties		
Poisson's ratio:		0.35
Coefficient of later	al pressure,Ko:	0.5
Modulus (input) (p	osi):	16000
General Parameters		
Maximum dry unit	weight (pcf):	120
Specific Gravity		2.7